Category Archives: Isoflavones

Cladrin Increases Osteoblast Prolifertion in Rats

Abstract

Differential effects of formononetin and cladrin on osteoblast function, peak bone mass achievement and bioavailability in rats.

Dietary soy isoflavones including genistein and daidzein have been shown to have favorable effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of cladrin and formononetin, two structurally related methoxydaidzeins found in soy food and other natural sources. Cladrin, at as low as 10 nM, maximally stimulated both osteoblast proliferation and differentiation by activating MEK-Erk pathway. On the other hand, formononetin maximally stimulated osteoblast differentiation at 100 nM that involved p38 MAPK pathway but had no effect on osteoblast proliferation. Unlike daidzein, these two compounds neither activated estrogen receptor in osteoblast nor had any effect on osteoclast differentiation. Daily oral administration of each of these compounds at 10.0 mg kg(-1) day(-1) dose to recently weaned female Sprague-Dawley rats for 30 consecutive days, increased bone mineral density at various anatomic positions studied. By dynamic histomorphometry of bone, we observed that rats treated with cladrin exhibited increased mineral apposition and bone formation rates compared with control, while formononetin had no effect. Cladrin had much better plasma bioavailability compared with formononetin. None of these compounds exhibited estrogen agonistic effect in uteri. Our data suggest that cladrin is more potent among the two in promoting parameters of peak bone mass achievement, which could be attributed to its stimulatory effect on osteoblast proliferation and better bioavailability. To the best of our knowledge, this is the first attempt to elucidate structure-activity relationship between the methoxylated forms of daidzein and their osteogenic effects.

Gautam AK, Bhargavan B, Tyagi AM, Srivastava K…
J. Nutr. Biochem. Apr 2011
PMID: 20579866

Cladrin Increases Bone Formation and Strength in Rats

Abstract

Positive skeletal effects of cladrin, a naturally occurring dimethoxydaidzein, in osteopenic rats that were maintained after treatment discontinuation.

Effects of cladrin treatment and withdrawal in osteopenic rats were studied. Cladrin improved trabecular microarchitecture, increased lumbar vertebral compressive strength, augmented coupled remodeling, and increased bone osteogenic genes. A significant skeletal gain was maintained 4 weeks after cladrin withdrawal. Findings suggest that cladrin has significant positive skeletal effects.
We showed that a standardized extract of Butea monosperma preserved trabecular bone mass in ovariectomized (OVx) rats. Cladrin, the most abundant bioactive compound of the extract, promoted peak bone mass achievement in growing rats by stimulating osteoblast function. Here, we studied the effects of cladrin treatment and withdrawal on the osteopenic bones.
Adult female Sprague-Dawley rats were OVx and left untreated for 12 weeks to allow for significant estrogen deficiency-induced bone loss, at which point cladrin (1 and 10 mg/kg/day) was administered orally for another 12 weeks. Half of the rats were killed at the end of the treatments and the other half at 4 weeks after treatment withdrawal. Sham-operated rats and OVx rats treated with PTH or 17β-estradiol (E2) served as various controls. Efficacy was evaluated by bone microarchitecture using microcomputed tomographic analysis and fluorescent labeling of bone. qPCR and western blotting measured mRNA and protein levels in bone and uterus. Specific ELISA was used for measuring levels of serum PINP and urinary CTx.
In osteopenic rats, cladrin treatment dose dependently improved trabecular microarchitecture, increased lumbar vertebral compression strength, bone formation rate (BFR), cortical thickness (Cs.Th), serum PINP levels, and expression of osteogenic genes in bones; and reduced expression of bone osteoclastogenic genes and urinary CTx levels. Cladrin had no uterine estrogenicity. Cladrin at 10 mg/kg maintained acquired skeletal gains 4 weeks after withdrawal. Cladrin had positive skeletal effects in osteopenic rats that were maintained after treatment withdrawal.

Khan K, Sharan K, Swarnkar G, Chakravarti B…
Osteoporos Int Apr 2013
PMID: 22932734

Soy Isoflavones + Vitamin D3 Improve Bone Density, Stimulate Osteoblasts, and Inhibit Osteoclasts in Ovariectomized Rats

Abstract

Combined effect of soy isoflavones and vitamin D3 on bone loss in ovariectomized rats.

Several studies have shown that soy isoflavones have estrogen-like activities and might constitute an alternative to hormone replacement treatment. The present study investigated the effects of soy isoflavones alone and combined with vitamin D3 on prevention of bone loss.
Sprague-Dawley rats were sham-operated (n = 8) or ovariectomized (OVX; n = 40), and then the OVX rats were randomly assigned to five groups that were untreated or treated for 14 wk with vitamin D3, 17β-estradiol, soy isoflavone extract (SIE), or vitamin D3 plus SIE. The effects of the isoflavones and 1α,25(OH)(2)D(3) on cultured osteoblasts and osteoclasts also were investigated.
In OVX rats, the bone mineral density and trabecular bone volume loss were improved by 17β-estradiol, SIE, or SIE plus vitamin D3 treatment. SIE treatment was more effective than vitamin D3 or 17β-estradiol in inhibiting increases in serum tumor necrosis factor-α levels and osteoblast osteoprotegerin expression. SIE plus vitamin D3 was more effective in increasing osterix expression than each alone. Bone cell cultures showed that the isoflavones induced preosteoblasts to differentiate into osteoblasts and increased osteoblast mineralization. Isoflavones inhibited preosteoclasts and osteoclast proliferation and decreased osteoclast resorption. The combination of isoflavones plus 1α,25(OH)(2)D(3) showed additive effects on the increase in cell proliferation of cultured preosteoblasts.
Treatment with soy isoflavones might be an alternative to hormone replacement therapy in decreasing bone loss from postmenopausal estrogen deficiency. In addition, there are further effects on increasing transcription factor osterix expression and preosteoblast proliferation when these were combined with vitamin D3.

Chang KL, Hu YC, Hsieh BS, Cheng HL…
Nutrition Jan 2013
PMID: 22858193

Genistein + EPA + DHA + Vitamin D + K1 Increases Bone Density in Postmenopausal Women

Abstract

Effect of a combination of genistein, polyunsaturated fatty acids and vitamins D3 and K1 on bone mineral density in postmenopausal women: a randomized, placebo-controlled, double-blind pilot study.

Many postmenopausal women desire non-pharmaceutical alternatives to hormone therapy for protection against osteoporosis. Soybean isoflavones, especially genistein, are being studied for this purpose. This study examined the effects of synthetic genistein in combination with other potential bone-protective dietary molecules on bone mineral density (BMD) in early postmenopausal women.
In this 6-month double-blind pilot study, 70 subjects were randomized to receive daily either calcium only or the geniVida™ bone blend (GBB), which consisted of genistein (30 mg/days), vitamin D3 (800 IU/days), vitamin K1 (150 μg/days) and polyunsaturated fatty acids (1 g polyunsaturated fatty acids as ethyl ester: eicosapentaenoic acid/docosahexaenoic acid ratio = ~2/1). Markers of bone resorption and formation and BMD at the femoral neck, lumbar spine, Ward’s triangle, trochanter and intertrochanter, total hip and whole body were assessed.
Subjects supplemented with the GBB (n = 30) maintained femoral neck BMD, whereas in the placebo group (n = 28), BMD significantly decreased (p = 0.007). There was also a significant difference (p < 0.05) in BMD between the groups at Ward’s triangle in favor of the GBB group. Bone-specific alkaline phosphatase and N-telopeptide significantly increased in the GBB group in comparison with those in baseline and in the placebo group. The GBB was well tolerated, and there were no significant differences in adverse events between groups.
The GBB may help to prevent osteoporosis and reduce fracture risk, at least at the hip, in postmenopausal women. Larger and longer-term clinical trials are warranted.

Lappe J, Kunz I, Bendik I, Prudence K…
Eur J Nutr Feb 2013
PMID: 22302614 | Free Full Text

Review: Phytochemicals for Bone Osteoporosis

Abstract

Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis.

Aging induces a decrease in bone mass, and osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Bone loss with increasing age may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional factors may prevent bone loss with aging, although chemical compounds in food and plants which act on bone metabolism are poorly understood. We have found that isoflavones (including genistein and daidzein), which are contained in soybeans, have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. Menaquinone-7, an analogue of vitamin K(2) which is abundant in fermented soybeans, has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption. Of various carotenoids, beta-cryptoxanthin, which is abundant in Satsuma mandarin (Citrus unchiu MARC), has a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. The supplementation of these factors has a preventive effect on bone loss induced by ovariectomy in rats, which are an animal model of osteoporosis, and their intake has been shown to have a stimulatory effect on bone mass in humans. Factors with an anabolic effect on bone metabolism were found in extracts obtained from wasabi leafstalk (Wasabi japonica MATSUM), the marine alga Sargassum horneri, and bee pollen Cistus ladaniferus. Phytocomponent p-hydroxycinnamic acid was also found to have an anabolic effect on bone metabolism. Food chemical factors thus play a role in bone health and may be important in the prevention of bone loss with increasing age.

Yamaguchi M
Yakugaku Zasshi Nov 2006
PMID: 17077614 | Free Full Text

Palash Prevents Bone Loss and Stimulates Formation in Ovariectomized Rats

Abstract

Total extract and standardized fraction from the stem bark of Butea monosperma have osteoprotective action: evidence for the nonestrogenic osteogenic effect of the standardized fraction.

The aim of this study was to determine the skeletal effects of Butea total extract (BTE) and its acetone soluble fraction (ASF) from Butea monosperma, which is rich in methoxyisoflavones, in ovariectomized (OVx) rats, a model for postmenopausal bone loss.
BTE (1.0 g kg d) and ASF (100 mg kg d) were given orally for 12 weeks to adult OVx rats. The sham-operated and ovariectomy + vehicle groups served as controls. Bone mineral density, osteoid formation (mineral apposition rate and bone formation rate), bone microarchitecture, and bone turnover/resorption markers were studied. Phytoestrogens in rats given BTE and ASF were analyzed by high-performance liquid chromatography. One-way analysis of variance was used to test significance of effects.
OVx rats treated with either BTE or ASF exhibited increased bone mineral density in trabecular bones and improved trabecular microarchitecture compared with the ovariectomy + vehicle group. ASF treatment was more efficient than BTE treatment in maintaining trabecular microarchitecture. Serum osteocalcin and urinary type 1 collagen levels in OVx rats treated with either BTE or ASF were significantly lower than those of the ovariectomy + vehicle group. ASF treatment led to increased mineral apposition rate and bone formation rate compared with ovariectomy + vehicle, whereas BTE had no such effect. In the uterotropic assay, BTE was mildly estrogenic in adult OVx rats. In immature rats, BTE exhibited both estrogenicity and antiestrogenicity. ASF had neither uterine estrogenicity nor antiestrogenicity. Analysis of phytoestrogens revealed significant enrichment of cladrin, isoformononetin, and medicarpin in ASF over BTE.
Derived from B monosperma, ASF at a 10-fold lower dose than that of BTE was effective in preventing OVx-induced bone loss and stimulated new-bone formation.

Pandey R, Gautam AK, Bhargavan B, Trivedi R…
Menopause
PMID: 20395887

Genistein Increases Bone Density in Rats, Cooked Soybeans and Stachyose Don’t

Abstract

Influence of a low dose of dietary soybean on bone properties and mineral status in young rats.

The aim of this study was to evaluate effects of dietary supplementation with genistein, daidzein stachyose, and raw or cooked soybean on mineral content, optical density, and mechanical properties of bones in growing rats. The experiment was performed on 70 male young Wistar rats (4 weeks old at the start of the experiment) divided into seven groups. Genistein, daidzein, or stachyose were administered by gavage. Raw or cooked soybean was added directly to the diet (1%) The experiment lasted 28 days. Femurs were removed postmortem and kept until analysis at -20°C. Mineral content in bones was determined by atomic absorption flame spectrometry, and inductively coupled plasma atomic emission spectrometry. Optical density was analyzed with a KODAK 1D 3.5 system. Mechanical properties were tested using INSTRON 4301 equipment. Genistein increased mineral content in bones of growing rats. Biological action of genistein and daidzein on the mineralization of bone tissues in growing rats was different. Addition of stachyose (1.9 mg/day/rat) did not affect bone tissues, nor did the addition of raw or cooked soybean. None of the studied biologically active substances: genistein (0.26 mg/day/rat), daidzein (0.104 mg/day/rat), stachyose (1.9 mg/day/rat), or soybean had an effect on bone optical density.

Piastowska-Ciesielska AW, Gralak MA
Biofactors
PMID: 20806285

Review: Vitamin D + Isoflavones may be Synergistic

Abstract

Vitamin D interactions with soy isoflavones on bone after menopause: a review.

Vitamin D is known to increase Ca absorption in adults. However, the threshold vitamin D status to benefit Ca absorption is lower than the target vitamin D status for higher bone mineral density and lower fracture risk, pointing to another pathway for vitamin D to benefit bone. One possibility is by affecting osteoblast and osteoclasts directly. Vitamin D-related bone metabolism may also be affected by soy isoflavones, which selectively bind to the estrogen receptor β and may reduce bone loss in postmenopausal women. We discuss a possible synergistic effect of soy isoflavones and vitamin D on bone by affecting osteoblast and osteoclast formation and activity in postmenopausal women.

Park CY, Weaver CM
Nutrients Nov 2012
PMID: 23201836 | Free Full Text

Review: Isoflavones Benefits May be Due to Equol

Abstract

Isoflavone metabolism and bone-sparing effects of daidzein-metabolites.

Several dietary phytochemicals exhibit anti-oxidative, anti-inflammatory and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Soybean isoflavones are similar in structure to estrogen and have received considerable attention as potential alternatives to hormone replacement therapy. Daidzein, a major isoflavone found in soybean, is metabolized to equol by intestinal microflora; this metabolite exhibits stronger estrogenic activity than daidzein. Recent studies suggest that the clinical effectiveness of isoflavones might be due to their ability to produce equol in the gut. This review focused on the metabolic pathway of equol and possible bioactivities of equol and O-desmethylangolensin, another metabolite of daidzein, with regard to bone metabolism and the status of intestinal microflora. Furthermore, we considered risk-benefit analyses of isoflavones and their metabolites.

Uehara M
J Clin Biochem Nutr May 2013
PMID: 23704808 | Free Full Text

Isoflavones + Calcium Better Than Isoflavones or Calcium in Ovariectomized Rats

Abstract

Isoflavones with supplemental calcium provide greater protection against the loss of bone mass and strength after ovariectomy compared to isoflavones alone.

Although hormone replacement therapy (HRT) and calcium (Ca) supplementation preserve bone mass more when combined, there is a growing concern over the safety of HRT that necessitates thorough investigation of effective, alternative treatments for bone loss. While plant-derived estrogen-like compounds such as isoflavones preserve bone, it is not known whether isoflavones and Ca supplementation attenuate losses in bone mass and strength to a greater extent when combined. This study compared the effects of an isoflavone extract + high Ca to isoflavone extract or high Ca alone on preservation of bone mineral density (BMD) and biomechanical strength in ovariectomized (ovx) rats. Rats were sham-operated (n = 10) or ovx (n = 40). Shams were fed a 0.2% Ca diet. Ovx rats were randomized to a 0.2% Ca diet alone (OVX) or with isoflavone extract (IE; 1.6 g/kg diet) or to a high Ca diet (Ca; 2.5%) alone or a high Ca diet with the isoflavone extract (IE + Ca) for 8 weeks. BMD of femur and lumbar spine were measured by dual-energy X-ray absorptiometry. The biomechanical strength of femurs and individual vertebra was measured by three-point bending and compression testing, respectively. The average food intake was lowest (P < 0.05) among sham and IE groups and greatest (P < 0.05) among the OVX group. Final body weight was lowest (P < 0.05) among shams and highest (P < 0.05) among the OVX group while IE + Ca were lighter (P < 0.05) than all ovx groups. Femur and vertebra BMD was greater (P < 0.05) among IE + Ca and sham rats compared to IE, Ca, or OVX rats. Although there were differences in femur BMD among groups, biomechanical properties at the femur midpoint did not differ among groups, possibly due to the lack of cortical bone loss at this site. Conversely, vertebra biomechanical strength was greater (P < 0.05) among IE + Ca and Ca alone groups compared to IE alone. Uterine weight was higher (P < 0.05) among shams than OVX and IE with no difference among shams, Ca, or IE + Ca rats, suggesting that the isoflavones did not have an uterotrophic effect. In conclusion, isoflavones combined with high Ca are more protective against the loss of femur and vertebra BMD than isoflavones or high Ca diet alone.

Breitman PL, Fonseca D, Cheung AM, Ward WE
Bone Oct 2003
PMID: 14555264


Also, it’s interesting that Calcium alone was superior to Isoflavones alone.