Category Archives: Supplements

Icariin Inhibits Osteoclasts In Vitro

Abstract

Icariin inhibits the osteoclast formation induced by RANKL and macrophage-colony stimulating factor in mouse bone marrow culture.

Icariin is a prenylated flavonol glycoside contained in the herb Epimedium, which has long been used to improve bone fracture healing or prevent osteoporosis because of the belief that the herb has bone-strengthening action. We have previously demonstrated that icariin enhances the osteogenic differentiation of rat bone marrow stromal cells, and partially explained the bone-strengthening mechanism of the herb. In the present study, the effect of icariin on osteoclastogenesis and bone resorption activity was investigated in mouse bone marrow culture. It was found that icariin dose-dependently inhibited the growth and differentiation of hemopoietic cells from which osteoclasts were formed. Far less TRAP+ multinuclear cells appeared in the 10 microM icariin group than in the control. The bone resorption pits formed in the 10 microM icariin group was also significantly less than that of the control. RT-PCR analysis showed that the gene expression of TRAP, RANK and CTR was obviously lower than that of the control. It can be concluded that icariin has the ability to inhibit the formation and bone resorption activity of osteoclasts, which suggests that icariin should be the effective component for the bone-strengthening action of herb Epimedium.

Chen KM, Ge BF, Liu XY, Ma PH…
Pharmazie May 2007
PMID: 17557750

Horny Goat Weed Icariin Metabolites Enhance Osteoblasts and Inhibit Osteoclasts In Vitro

Abstract

Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro.

Icariin, a principal flavonoid glycoside in Herba Epimedii, is hypothesized to possess beneficial effects on bone mass. Icariin is metabolized to icariside II and then to icaritin in vivo. In the present study, we investigated the in vitro effects of icariin, icariside II and icaritin on both osteoblasts and osteoclasts. After treatment with these compounds at concentrations 10(-5)-10(-8) mol/l, osteoblasts were examined for proliferation, alkaline phosphatase activity, osteocalcin secretion and matrix mineralization, as well as expression levels of bone-related proteins. The formation of osteoclasts was assessed by counting the number of multinucleated TRAP-positive cells. The activity of isolated rat osteoclasts was evaluated by measuring pit area, actin rings and superoxide generation. Icariside II and icaritin increased the mRNA expression of ALP, OC, COL-1 and OPG, but suppressed that of RANKL. In addition, these compounds reduced the number of multinucleated TRAP-positive cells and the osteoclastic resorption area. Also decreases were observed in superoxide generation and actin ring formation that are required for osteoclast survival and bone resorption activity. These findings suggest that icaritin, which was more potent than icariin and icariside II, enhanced the differentiation and proliferation of osteoblasts, and facilitated matrix calcification; meanwhile it inhibited osteoclastic differentiation in both osteoblast-preosteoclast coculture and osteoclast progenitor cell culture, and reduced the motility and bone resorption activity of isolated osteoclasts.

Huang J, Yuan L, Wang X, Zhang TL…
Life Sci. Aug 2007
PMID: 17764702

Icariin, Anemarsaponin BII, and Berberine Benefit Bones

Abstract

Antiosteoporotic chemical constituents from Er-Xian Decoction, a traditional Chinese herbal formula.

Er Xian Decoction (EXD), a traditional Chinese medicine formula, has long been used for the treatment of osteoporosis and menopausal syndrome in China. The present study was designed to investigate the antiosteoporotic constituents of EXD, and evaluate their antiosteoporotic effects in ovariectomized rats.
Osteoblasts in neonatal calvaria cultures and osteoclasts derived from rat marrow cells were used to bioactivity-guided screen the active constituents. The proliferation of osteoblast was assayed by MTT methods. The activity of ALP and TRAP was measured by p- nitrophenyl sodium phosphate assay. The antiosteoporotic effects of icariin (1), anemarsaponin B II (8) and berberine (6) were verified by using OVX rats model. The bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry using the small animal scan mode. The undecalcified longitudinal proximal tibial metaphysical (PTM) sections were cut and stained for the bone histomorphometric analysis.
Bioactivity-guided fractionation has led to the successful isolation of antiosteoporotic constituents, i.e., icariin (1), icariside I (2), baohuoside I (3), mangiferin (4), neomangiferin (5), berberine (6), anemarsaponin B (7), anemarsaponin BII (8), anemarsaponin C (9), anemarrhenasaponin I (10), rubiadin-1-methyl ether (11) and obaculactone (12) from EXD. Further study showed that icariin (1), anemarsaponin BII (8) and berberine (6) increased the BMD in ovariectomized rats, and icariin (1) not only increased the bone formation, but also inhibited bone resorption; anemarsaponin BII (8) mainly increased bone formation and berberine (6) only inhibited the bone resorption in ovariectomized rats.
Our findings demonstrate that multiple ingredients are responsible for antiosteoporotic activity in traditional Chinese medicine formula Er-Xian decoction.

Qin L, Han T, Zhang Q, Cao D…
J Ethnopharmacol Jul 2008
PMID: 18501540

Icariin Stimulates Proliferation and Differentiation of Human Osteoblasts In Vitro

Abstract

Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2.

Icariine is a flavonoid isolated from a traditional Chinese medicine Epimedium pubescens and is the main active compound of it. Recently, Epimedium pubescens was found to have a therapeutic effect on osteoporosis. But the mechanism is unclear. The aim of the study was to research the effect of Icariine on the proliferation and differentiation of human osteoblasts.
Human osteoblasts were obtained by inducing human marrow mesenchymal stem cells (hMSCs) directionally and were cultured in the presence of various concentrations of Icariine. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of Icariine on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of calcified nodules were assayed to observe the effect on cell differentiation. The expression of bone morphogenetic protein 2 (BMP-2) mRNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR).
Icariine (20 microg/ml) increased significantly the proliferation of human osteoblasts. And, Icariine (10 microg/ml and 20 microg/ml) increased the activity of ALP and the amount of calcified nodules of human osteoblasts significantly (P < 0.05). BMP-2 mRNA synthesis was elevated significantly in response to Icariine (20 microg/ml).
Icariine has a direct stimulatory effect on the proliferation and differentiation of cultured human osteoblast cells in vitro, which may be mediated by increasing production of BMP-2 in osteoblasts.

Yin XX, Chen ZQ, Liu ZJ, Ma QJ…
Chin. Med. J. Feb 2007
PMID: 17355822 | Free Full Text

Horny Goat Weed Phytoestrogens Maintain Bone Density Over 2 Years in Women

Abstract

Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial.

Epimedium brevicornum maxim, a nonleguminous medicinal plant, has been found to be rich in phytoestrogen flavonoids. Results from a 24-month randomized double-blind placebo-controlled clinical trial showed that Epimedium-derived phytoestrogen flavonoids were able to exert beneficial effects on preventing bone loss in late postmenopausal women, without resulting in a detectable hyperplasia effect on the endometrium.
We performed a 24-mo randomized double-blind placebo-controlled clinical trial for evaluating the effect of the Epimedium-derived phytoestrogen flavonoids (EPFs) on BMD, bone turnover biochemical markers, serum estradiol, and endometrial thickness in postmenopausal women.
One hundred healthy late postmenopausal women, with a natural menopausal history within 10 approximately 18 yr and with a BMD T-score at the lumbar spine between -2 and -2.5 SD, were randomized into EPF treatment group (n = 50; a daily dose of 60 mg Icariin, 15 mg Daidzein, and 3 mg Genistein) or placebo control group (n = 50). All participants received 300 mg element calcium daily. BMD, bone turnover biochemical markers, serum estradiol, and endometrial thickness were measured at baseline and 12 and 24 mo after intervention.
Eighty-five participants completed the trial. The patterns of BMD changes were significantly different between the EPF treatment group and placebo control group by repeated-measures ANOVA (p = 0.045 for interaction between time and group at femoral neck; p = 0.006 for interaction between time and group at lumbar spine). BMD was found with a decreased tendency in the placebo control group at 12 (femoral neck: -1.4%, p = 0.104; lumbar spine: -1.7%, p = 0.019) and 24 mo (femoral neck: -1.8%, p = 0.048; lumbar spine: -2.4%, p = 0.002), whereas EPF treatment maintained BMD at 12 (femoral neck: 1.1%, p = 0.285; lumbar spine:1.0%, p = 0.158) and 24 mo (femoral neck: 1.6%, p = 0.148; lumbar spine: 1.3%, p = 0.091). The difference in lumbar spine between the two groups was significant at both 12 (p = 0.044) and 24 mo (p = 0.006), whereas the difference in the femoral neck was marginal at 12 mo (p = 0.061) and significant at 24 mo (p = 0.008). Levels of bone biochemical markers did not change in the placebo control group. In contrast, EPF intervention significantly decreased levels of deoxypyrdinoline at 12 (-43%, p = 0.000) and 24 mo (-39%, p = 0.000), except for osteocalcin at 12 (5.6%, p = 0.530) and 24 mo (10.7%, p = 0.267). A significant difference in deoxypyrdinoline between the two groups was found at both 12 (p = 0.000) and 24 mo (p = 0.001). Furthermore, neither serum estradiol nor endometrial thickness was found to be changed in either groups during the clinical trial.
EPFs exert a beneficial effect on preventing bone loss in late postmenopausal women without resulting in a detectable hyperplasia effect on the endometrium.

Zhang G, Qin L, Shi Y
J. Bone Miner. Res. Jul 2007
PMID: 17419678

Horny Goat Weed and Icariin may Promote Osteoblasts In Vitro

Abstract

Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts.

In a bioassay-guided drug screening for anti-osteoporosis activity, eight flavonol glycosides were isolated from Epimedium koreanum Nakai, which is traditionally widely used in China for the treatment of impotence and osteoporosis. The effects of total flavonoids and flavonol glycosides on the proliferation and differentiation of rat calvarial osteoblast-like cells were evaluated by the MTT method and measuring the activity of alkaline phosphatase (ALP activity). Total flavonoids (1.2 x10(-2) to 6.0 x10(-7) mg/ml) and flavonol glycosides (2.0 x10(-5) to 1.0 x10(-9) mol/l) exhibited a strong inhibition on the proliferation of primary osteoblasts at most concentrations. However, the total flavonoids and icariin significantly promoted the differentiation of primary osteoblasts. The results suggested that flavonoids from E. koreanum Nakai may improve the development of osteoblasts by promoting the ALP activity; and icariin might be one of the active constituents facilitating the differentiation of osteoblasts.

Zhang DW, Cheng Y, Wang NL, Zhang JC…
Phytomedicine Jan 2008
PMID: 17482445

Resveratrol Enhances Osteogenesis via Runx2 and SIRT1 In Vitro

Abstract

Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation.

Osteogenic repair in response to bone injury is characterized by activation and differentiation of mesenchymal stem cells (MSCs) to osteoblasts. This study determined whether activation of Sirt-1 (a NAD(+)-dependent histone deacetylase) by the phytoestrogen resveratrol affects osteogenic differentiation.
Monolayer and high-density cultures of MSCs and pre-osteoblastic cells were treated with an osteogenic induction medium with/without the Sirt-1 inhibitor nicotinamide or/and resveratrol in a concentration dependent manner.
MSCs and pre-osteoblastic cells differentiated to osteoblasts when exposed to osteogenic-induction medium. The osteogenic response was blocked by nicotinamide, resulting in adipogenic differentiation and expression of the adipose transcription regulator PPAR-γ (peroxisome proliferator-activated receptor). However, in nicotinamide-treated cultures, pre-treatment with resveratrol significantly enhanced osteogenesis by increasing expression of Runx2 (bone specific transcription factor) and decreasing expression of PPAR-γ. Activation of Sirt-1 by resveratrol in MSCs increased its binding to PPAR-γ and repressed PPAR-γ activity by involving its cofactor NCoR (nuclear receptor co-repressor). The modulatory effects of resveratrol on nicotinamide-induced expression of PPAR-γ and its cofactor NCoR were found to be mediated, at least in part, by Sirt-1/Runx2 association and deacetylation of Runx2. Finally, knockdown of Sirt-1 by using antisense oligonucleotides downregulated the expression of Sirt-1 protein and abolished the inhibitory effects of resveratrol, namely nicotinamide-induced Sirt-1 suppression and Runx2 acetylation, suggesting that the acetylated content of Runx2 is related to downregulated Sirt-1 expression.
These data support a critical role for Runx2 acetylation/deacetylation during osteogenic differentiation in MSCs in vitro.

Shakibaei M, Shayan P, Busch F, Aldinger C…
PLoS ONE 2012
PMID: 22539994 | Free Full Text


From the introduction:

Resveratrol is a polyphenolic phytoestrogen (trans-3,5, 4′-trihydroxystilbene) found in the skin of red grapes, red vines, various other fruits, peanuts and root extracts of Polygonum cuspidatum [8]. Resveratrol acts as a mixed agonist/antagonist for the estrogen receptors alpha and beta [9]. Through binding to the estrogen receptor, resveratrol is thought to exert beneficial effects on the cardiovascular system and may reverse osteoporosis by a direct stimulatory effect on bone formation in osteoblastic cells [10]. Many of the biological effects of resveratrol have already been demonstrated in the literature; these include cardiovascular protection [11], anticancer activity [12] and stimulation of proliferation and osteoblastic differentiation in human and mouse MSCs [13], [14]. However, its effects on bone are less studied and are particularly relevant to this investigation.

From the discussion:

Resveratrol’s enhancement of osteogenesis was, at least in part regulated by Runx2 with additional contributions by Sirt-1. Resveratrol increases alkaline phosphatase activity in osteoblastic cells [10] an effect that is blocked by tamoxifen, an estrogen antagonist, suggesting that some of resveratrol’s stimulatory actions may be mediated through the estrogen receptor. Gehm et al. have reported that resveratrol acts as a phytoestrogen (i.e. activating the estrogen receptor) and decreases osteoporosis [43]. Moreover, resveratrol is one of the most potent Sirt-1 activators; through binding to a special binding site it induces a conformational change in Sirt-1, lowering the Km for both the acetylated substrate and NAD, thus resulting in increased enzymatic activity [18]. Sirt-1 facilitates the differentiation of MSCs to osteoblasts by directly regulating factors such as Runx2 and by modulation of nuclear receptor co-repressor NCoR and PPAR-γ.

Review: Vitamin K2 (MK-4) Monotherapy Modestly Increases Bone Density and Reduces Fractures in Eight Studies

Abstract

Vitamin k2 therapy for postmenopausal osteoporosis.

Vitamin K may play an important role in the prevention of fractures in postmenopausal women with osteoporosis. Menatetrenone is the brand name of a synthetic vitamin K2 that is chemically identical to menaquinone-4. The present review study aimed to clarify the effect of menatetrenone on the skeleton in postmenopausal women with osteoporosis, by reviewing the results of randomized controlled trials (RCTs) in the literature. RCTs that investigated the effect of menatetrenone on bone mineral density (BMD), measured by dual-energy X-ray absorptiometry and fracture incidence in postmenopausal women with osteoporosis, were identified by a PubMed search for literature published in English. Eight studies met the criteria for RCTs. Small RCTs showed that menatetrenone monotherapy decreased serum undercarboxylated osteocalcin (ucOC) concentrations, modestly increased lumbar spine BMD, and reduced the incidence of fractures (mainly vertebral fracture), and that combined alendronate and menatetrenone therapy enhanced the decrease in serum ucOC concentrations and further increased femoral neck BMD. This review of the literature revealed positive evidence for the effects of menatetrenone monotherapy on fracture incidence in postmenopausal women with osteoporosis. Further studies are required to clarify the efficacy of menatetrenone in combination with bisphosphonates against fractures in postmenopausal women with osteoporosis.

Iwamoto J
Nutrients 2014
PMID: 24841104 | Free Full Text


One interesting passage from the full text talks about the unpublished dose range study from Japan:

Orimo, H., et al. “Clinical evaluation of soft capsule menatetrenone (Ea-0167) in the treatment of osteoporosis: late phase II dose study.” J New Remedies Clinics 41 (1992): 1249-79.

A dose-finding study of menatetrenone in Japan [7] administered daily doses of 15, 45, 90, and 135 mg and revealed that 45 mg was the minimum effective dose for improving bone mass parameters evaluated by microdensitometry and/or single photon absorptiometry in postmenopausal women with osteoporosis. This optimal dose (45 mg/day) for the treatment of osteoporosis is about 150–180 times greater than the recommended daily dietary intake of vitamin K (250–300 μg) [8]. No toxic effects of menatetrenone (45 mg/day) have been reported [7]. High-dose vitamin K is needed to prevent fractures in postmenopausal women with osteoporosis [9]. However, the effect of menatetrenone on the skeleton remains a matter of controversy [10–17], and the role of menatetrenone in the treatment of osteoporosis therefore needs to be clarified.

Vitamin K1 and K2 (MK-4, MK-7) Don’t Prevent Bone Loss in Rats Fed Adequate Nutrients

Abstract

Vitamin K supplementation does not prevent bone loss in ovariectomized Norway rats.

Despite plausible biological mechanisms, the differential abilities of phylloquinone (PK) and menaquinones (MKn) to prevent bone loss remain controversial. The objective of the current study was to compare the effects of PK, menaquinone-4 (MK-4) and menaquinone-7 (MK-7) on the rate of bone loss in ovariectomized (OVX) Norway rats. A secondary aim was to compare the effects of vitamin K with those of bisphosphonates (BP) on bone loss.
Rats (n = 96) were randomized to 6 dosing groups [n = 16/group; Sham; OVX; OVX + BP (100 μg/kg/100 μg/mL saline sc); OVX + PK; OVX + MK-4; and OVX + MK-7] for 6 wk. Equimolar daily doses of 107 mg PK/kg, 147 mg MK-4/kg, and 201 mg MK-7/kg diet were provided.
BP significantly increased bone strength and bone mineral density (BMD) vs. OVX (P < 0.05). However, PK, MK-4 or MK-7 did not change bone strength or BMD compared to the OVX group. Whereas supplementation of PK, MK-4 and MK-7 increased serum and tibia concentrations of each respective form, PK concentrations were consistently higher despite equimolar intakes.
PK, MK-4, and MK-7 do not appear to prevent bone loss in OVX rats when administered concurrent with adequate intake of other nutrients.

Fu X, Moreines J, Booth SL
Nutr Metab (Lond) 2012
PMID: 22348311 | Free Full Text


In conclusion, supplementation of PK, MK-4 or MK-7 did not confer a beneficial effect on bone loss in ovariectomized Norway rats fed a diet that meets nutritional requirements for other nutrients, including calcium and vitamin D. This would suggest that equivocal findings in the literature regarding the effect of various forms of vitamin K on bone cannot be attributed to differences among the forms studied. These data are also consistent with a growing number of clinical studies that report no beneficial effect of vitamin K supplementation on bone loss in the elderly who are otherwise calcium and vitamin D-replete [1,18,19].

Ginkgo Biloba Stimulates Osteoblasts and Decreases Resorption with SERM-Like Effect in Rats

Abstract

Effects of ginkgo biloba on in vitro osteoblast cells and ovariectomized rat osteoclast cells.

Ginkgo biloba extract (GBE) has a selective estrogen receptor modulator (SERM)-like biphasic effect on estrogen, and could be a potential alternative to hormone replacement therapy (HRT). Here, we investigated whether GBE can ameliorate estrogen-depleted osteoporosis in in vitro osteoblast cells and in estrogen-deprived ovariectomized (OVX) rats, a classical animal model for postmenopausal osteoporosis. GBE (50-150 microg/mL) significantly increased ALP (Alkaline phosphatase) activity of osteoblast cells, indicating that GBE promotes osteoblast mineralization. OVX rats exposed to GBE (100 and 200 mg/kg/day, oral treatment), raloxifene (3 mg/kg/day, oral treatment) or estradiol (E2, 10 microg/kg/day, subcutaneous injection) decreased osteoclast resorptive activity compared with OVX rats. GBE and raloxifene did not increase uterine weight compared with OVX rats, while E2 and Sham control did, suggesting that GBE has no uterotrophic activity, which is a disadvantage of estrogen therapy. In OVX rats, GBE did not restore severe bone density loss induced by OVX, indicating that GBE may be insufficient as therapeutic material for severe osteoporosis. However, despite its no effects on bone density loss in OVX rats, GBE did stimulate osteoblast differentiation and antiosteoclastic activity in vitro. Therefore, GBE may have preventive potential on osteoporosis as do other phytoestrogens.

Oh SM, Kim HR, Chung KH
Arch. Pharm. Res. Feb 2008
PMID: 18365693