Category Archives: Calcium

Isoflavones + Calcium Better Than Isoflavones or Calcium in Ovariectomized Rats

Abstract

Isoflavones with supplemental calcium provide greater protection against the loss of bone mass and strength after ovariectomy compared to isoflavones alone.

Although hormone replacement therapy (HRT) and calcium (Ca) supplementation preserve bone mass more when combined, there is a growing concern over the safety of HRT that necessitates thorough investigation of effective, alternative treatments for bone loss. While plant-derived estrogen-like compounds such as isoflavones preserve bone, it is not known whether isoflavones and Ca supplementation attenuate losses in bone mass and strength to a greater extent when combined. This study compared the effects of an isoflavone extract + high Ca to isoflavone extract or high Ca alone on preservation of bone mineral density (BMD) and biomechanical strength in ovariectomized (ovx) rats. Rats were sham-operated (n = 10) or ovx (n = 40). Shams were fed a 0.2% Ca diet. Ovx rats were randomized to a 0.2% Ca diet alone (OVX) or with isoflavone extract (IE; 1.6 g/kg diet) or to a high Ca diet (Ca; 2.5%) alone or a high Ca diet with the isoflavone extract (IE + Ca) for 8 weeks. BMD of femur and lumbar spine were measured by dual-energy X-ray absorptiometry. The biomechanical strength of femurs and individual vertebra was measured by three-point bending and compression testing, respectively. The average food intake was lowest (P < 0.05) among sham and IE groups and greatest (P < 0.05) among the OVX group. Final body weight was lowest (P < 0.05) among shams and highest (P < 0.05) among the OVX group while IE + Ca were lighter (P < 0.05) than all ovx groups. Femur and vertebra BMD was greater (P < 0.05) among IE + Ca and sham rats compared to IE, Ca, or OVX rats. Although there were differences in femur BMD among groups, biomechanical properties at the femur midpoint did not differ among groups, possibly due to the lack of cortical bone loss at this site. Conversely, vertebra biomechanical strength was greater (P < 0.05) among IE + Ca and Ca alone groups compared to IE alone. Uterine weight was higher (P < 0.05) among shams than OVX and IE with no difference among shams, Ca, or IE + Ca rats, suggesting that the isoflavones did not have an uterotrophic effect. In conclusion, isoflavones combined with high Ca are more protective against the loss of femur and vertebra BMD than isoflavones or high Ca diet alone.

Breitman PL, Fonseca D, Cheung AM, Ward WE
Bone Oct 2003
PMID: 14555264


Also, it’s interesting that Calcium alone was superior to Isoflavones alone.

Vitamin C + Calcium is Associated with Increased Bone Mass in Postmenopausal Women

Abstract

The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study.

Ascorbic acid is a required cofactor in the hydroxylations of lysine and proline necessary for collagen formation; its role in bone cell differentiation and formation is less well characterized. This study examines the cross-sectional relation between dietary vitamin C intake and bone mineral density (BMD) in women from the Postmenopausal Estrogen/Progestin Interventions Trial. BMD (spine and hip) was measured using dual energy X-ray absorptiometry (DXA). The PEPI participants (n = 775) included in this analysis were Caucasian and ranged in age from 45 to 64 years. At the femoral neck and total hip after adjustment for age, BMI, estrogen use, smoking, leisure physical activity, calcium and total energy intake, each 100 mg increment in dietary vitamin C intake, was associated with a 0. 017 g/cm2 increment in BMD (P = 0.002 femoral neck; P = 0.005 total hip). After adjustment, the association of vitamin C with lumbar spine BMD was similar to that at the hip, but was not statistically significant (P = 0.08). To assess for effect modification by dietary calcium, the analyses were repeated, stratified by calcium intake (>500 mg/day and </=500 mg/day). For the femoral neck, women with higher calcium intake had an increment of 0.0190 g/cm2 in BMD per 100 mg vitamin C (P = 0.002). No relation between BMD and vitamin C was evident in the lower calcium stratum. Similar effect modification by calcium was observed at the total hip: the beta coefficient in the higher calcium stratum was similar to that for the total sample (beta = 0.0172, P = 0.01), but no statistically significant relation between total hip BMD and vitamin C was found in the lower calcium subgroup. Although the relation between vitamin C and lumbar spine BMD was of marginal statistical significance in the total sample, among women ingesting higher calcium, a statistically significant association was observed (beta = 0.0199, P = 0.024). These data are consistent with a positive association of vitamin C with BMD in postmenopausal women with dietary calcium intakes of at least 500 mg.

Hall SL, Greendale GA
Calcif. Tissue Int. Sep 1998
PMID: 9701620

Review: Calcium, Vitamin D, K, Phytoestrogens

Abstract

Diet, nutrition, and bone health.

Osteoporosis is a debilitating disease that affects many older people. Fragility fractures are the hallmark of osteoporosis. Although nutrition is only 1 of many factors that influence bone mass and fragility fractures, there is an urgent need to develop and implement nutritional approaches and policies for the prevention and treatment of osteoporosis that could, with time, offer a foundation for population-based preventive strategies. However, to develop efficient and precocious strategies in the prevention of osteoporosis, it is important to determine which modifiable factors, especially nutritional factors, are able to improve bone health throughout life. There are potentially numerous nutrients and dietary components that can influence bone health, and these range from the macronutrients to micronutrients as well as bioactive food ingredients. The evidence-base to support the role of nutrients and food components in bone health ranges from very firm to scant, depending on the nutrient/component. This article initially overviews osteoporosis, including its definition, etiology, and incidence, and then provides some information on possible dietary strategies for optimizing bone health and preventing osteoporosis. The potential benefits of calcium, vitamin D, vitamin K(1), phytoestrogens, and nondigestible oligosaccharides are briefly discussed, with particular emphasis on the evidence base for their benefits to bone. It also briefly considers some of the recent findings that highlight the importance of some dietary factors for bone health in childhood and adolescence.

Cashman KD
J. Nutr. Nov 2007
PMID: 17951494 | Free Full Text

Review: Inulin and FOS Mechanisms

Abstract

Inulin, oligofructose and bone health: experimental approaches and mechanisms.

Inulin-type fructans have been proposed to benefit mineral retention, thereby enhancing bone health. Many, but not all, experimental animal studies have shown increased mineral absorption by feeding non-digestible oligosaccharides. Possible reasons for inconsistencies are explored. A few studies have reported an enhanced bone mineral density or content. Bone health can be evaluated in chronic feeding studies with bone densitometry, bone breaking strength, bone mineral concentration and bone structure. Isotopic Ca tracers can be used to determine the point of metabolism affected by feeding a functional food ingredient. These methods and the effects of feeding inulin-type fructose are reviewed. Inulin-type fructans enhance Mg retention. Chicory long-chain inulin and oligofructose enhance femoral Ca content, bone mineral density and Ca retention through enhanced Ca absorption and suppressed bone turnover rates, but it is not bone-promoting under all conditions.

Weaver CM
Br. J. Nutr. Apr 2005
PMID: 15877902

Review: Inulin, Isoflavones, Calcium

Abstract

Inulin-type fructans and bone health: state of the art and perspectives in the management of osteoporosis.

If the primary role of diet is to provide sufficient nutrients to meet the metabolic requirements of an individual, there is an emerging rationale to support the hypothesis that, by modulating specific target functions in the body, it can help achieve optimal health. Regarding osteoporosis prevention, since Ca is most likely to be inadequate in terms of dietary intake, every strategy targeting an improvement in Ca absorption is very interesting. Actually, this process may be susceptible to manipulation by fermentable substrates. In this light, inulin-type fructans are very interesting, even if we need to gather more data targeting bone metabolism before health professionals can actively advocate their consumption to prevent senile osteoporosis. Besides targeting the prevention of postmenopausal osteoporosis, inulin-type fructans still remain a source for putative innovative dietary health intervention. Indeed, given in combination with isoflavones, they may have a potential for maintaining or improving the bone mass of human subjects, by modulating the bioavailability of phyto-oestrogens.

Coxam V
Br. J. Nutr. Apr 2005
PMID: 15877884

Review: Adding Calcium, Magnesium, Vitamin D, Vitamin K, Inulin, Protein, and Phytoestrogens to Foods

Abstract

Biomarkers of bone health appropriate for evaluating functional foods designed to reduce risk of osteoporosis.

Osteoporosis is a growing global problem. The health care costs and decreased productivity and quality of life are staggering. Much research is invested in life-style approaches to build peak bone mass during growth to prevent osteoporosis as well as to treat the disease in later life. Functional foods have enjoyed a niche in bone health. Foods fortified with Ca are most popular. Other bone nutrients such as vitamin D, Mg and vitamin K are sometimes added. Future products are likely to include enhancers of Ca absorption such as inulin or whey proteins. Dietary factors that reduce urinary Ca loss (plant proteins) or suppress bone resorption (possibly phyto-oestrogens) are also gaining attention. Methodologies for evaluating the effectiveness of functional foods on bone health include measures of bone quality such as bone densitometry or measures of Ca metabolism, particularly absorption. Biochemical markers for bone turnover are less satisfactory for diet-related effects. Use of a rare isotope, 41Ca, and accelerator mass spectrometry offers a new approach for assessing the ability of functional foods to suppress bone resorption.

Weaver CM, Liebman M
Br. J. Nutr. Nov 2002
PMID: 12495464

Inulin Increases Whole-Body Bone Minerals in Rats

Abstract

Dietary chicory inulin increases whole-body bone mineral density in growing male rats.

Chicory inulin is a natural linear fructan that is not digested in the upper part of the gastrointestinal tract but is fermented in the cecocolon. It enhances calcium absorption in rats and improves femur and tibia mineral contents in gastrectomized or ovariectomized rats. We studied the effect of inulin (0, 5 and 10 g/100 g diet) on whole-body bone mineral content (WBBMC), whole-body bone area (WBBA) and whole-body bone mineral density (WBBMD) in live, growing male rats fed diets containing 0.2, 0.5 or 1 g Ca/100 g. Three experiments, each corresponding to one of the different dietary Ca concentrations, were performed using male Wistar rats (n = 108; 4 wk old). WBBMC was measured by dual-energy X-ray absorptiometry every 4 wk up to wk 22. Inulin increased WBBMC (P < 0.05) and WBBMD (P < 0.001) significantly but not WBBA at all ages and all dietary calcium concentrations. This is the first report to demonstrate that chicory inulin not only increases calcium absorption but also increases mineral parameters in whole-body bones.

Roberfroid MB, Cumps J, Devogelaer JP
J. Nutr. Dec 2002
PMID: 12468594 | Free Full Text

FOS Most Effective with High Calcium in Mice

Abstract

Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats.

We investigated the effects of dietary oligofructose and Ca on bone structure in ovariectomized rats, using microradiography and histomorphometry. Ninety-six animals were allocated to seven experimental groups: G1, sham-operated; G2-G7, ovariectomized. Semi-purified diets containing 5 g Ca/kg (recommended content) without oligofructose (G1, G2) or with 25, 50 or 100 g oligofructose/kg (G3, G4, G5) or 10 g Ca/kg (high content) without oligofructose (G6) or with 50 g oligofructose/kg (G7) were fed for 16 weeks. At the recommended level of Ca, high oligofructose (G5) increased femur mineral levels in ovariectomized rats, while medium oligofructose did so at high Ca. Increasing Ca in the absence of oligofructose did not increase femur mineral content. Trabecular bone area (%) analysed in the tibia was 10.3 (sem 1.2) (G1), 7.7 (sem 0.6) (G2), 9.3 (sem 0.7) (G3), 9.4 (sem 1.0) (G4), 9.5 (sem 0.7) (G5), 10.2 (sem 0.8) (G6), and 12.6 (sem 0.8) (G7). At the recommended level of Ca, 25 g oligofructose/kg prevented loss of trabecular area due to increased trabecular thickness, while 50 or 100 g oligofructose/kg increased trabecular perimeter. At high Ca, oligofructose prevented loss of bone area due to increased trabecular number but similar thickness (G7 v. G6). When Ca was raised in the presence of oligofructose (G7), trabecular area and cortical thickness were highest, while loss of trabecular connectivity was lowest of all groups. At the same time, lumbar vertebra Ca was higher; 44.0 (sem 0.8) (G7) compared with 41.6 (sem 0.8) (G2), 41.4 (sem 0.7) (G4), and 40.5 (sem 1.0) mg (G6). We conclude that ovariectomy-induced loss of bone structure in the tibia was prevented but with different trabecular architecture, depending on whether dietary Ca was increased, oligofructose was incorporated, or both. Oligofructose was most effective when dietary Ca was high.

Scholz-Ahrens KE, Açil Y, Schrezenmeir J
Br. J. Nutr. Oct 2002
PMID: 12323086

Calcium and Exercise in Rats

Abstract

Short- and long-term effects of calcium and exercise on bone mineral density in ovariectomized rats.

At the level of prevention of bone mineral loss produced by ovariectomy, the aim of the present study was to determine the effect produced by supplementation of Ca in the diet and a moderate exercise programme (treadmill), simultaneously or separately, in ovariectomized rats, an experimental model of postmenopausal bone loss. Female Wistar rats (n 110, 15 weeks old) were divided into five groups: (1) OVX, rats ovariectomized at 15 weeks of age, fed a standard diet; (2) SHAM, rats sham operated at 15 weeks of age, fed a standard diet; (3) OVX-EX, ovariectomized rats, fed a standard diet and performing the established exercise programme; (4) OVX-Ca, ovariectomized rats fed a diet supplemented with Ca; (5) OVX-EXCa, ovariectomized rats with the exercise programme and diet supplemented with Ca. The different treatments were initiated 1 week after ovariectomy and were continued for 13 weeks for subgroup 1 and 28 weeks for subgroup 2, to look at the interaction of age and time passed from ovariectomy on the treatments. Bone mineral density (BMD) was determined, at the end of the study, in the lumbar spine (L2, L3 and L4) and in the left femur using a densitometer. Bone turnover was also estimated at the end of the study, measuring the serum formation marker total alkaline phosphatase (AP) and the resorption marker serum tartrate-resistant acid phosphatase (TRAP). As expected, OVX rats showed a significant decrease (P<0.05) in BMD, more pronounced in subgroup 2, and a significant increase in AP and TRAP with regard to their respective SHAM group. The simultaneous treatment with Ca and exercise produced the best effects on lumbar and femoral BMD of ovariectomized rats, partially avoiding bone loss produced by ovariectomy, although it was not able to fully maintain BMD levels of intact animals. This combined treatment produced a significant increase in AP, both in subgroups 1 and 2, and a decrease in TRAP in subgroup 1, with regard to OVX group. The exercise treatment alone was able to produce an increase in BMD with regard to OVX group only in subgroup 1 of rats (younger animals and less time from ovariectomy), but not in subgroup 2. In agreement with this, there was an increase of AP in both subgroups, lower than that observed in animals submitted to exercise plus Ca supplement, and a decrease of TRAP in subgroup 1, without significant changes in this marker in the older rats. Ca treatment did not produce any significant effect on BMD in OVX rats in both subgroups of animals, showing a decrease of AP and TRAP levels in the younger animals with no significant variations in markers of bone remodelling in the older female rats compared with their respective OVX group.

Gala J, Díaz-Curiel M, de la Piedra C, Calero J
Br. J. Nutr. Oct 2001
PMID: 11591240


I don’t know what to make of this.