Category Archives: Horny Goat Weed

Icariin Inhibits Osteoclasts In Vitro

Abstract

Icariin inhibits the osteoclast formation induced by RANKL and macrophage-colony stimulating factor in mouse bone marrow culture.

Icariin is a prenylated flavonol glycoside contained in the herb Epimedium, which has long been used to improve bone fracture healing or prevent osteoporosis because of the belief that the herb has bone-strengthening action. We have previously demonstrated that icariin enhances the osteogenic differentiation of rat bone marrow stromal cells, and partially explained the bone-strengthening mechanism of the herb. In the present study, the effect of icariin on osteoclastogenesis and bone resorption activity was investigated in mouse bone marrow culture. It was found that icariin dose-dependently inhibited the growth and differentiation of hemopoietic cells from which osteoclasts were formed. Far less TRAP+ multinuclear cells appeared in the 10 microM icariin group than in the control. The bone resorption pits formed in the 10 microM icariin group was also significantly less than that of the control. RT-PCR analysis showed that the gene expression of TRAP, RANK and CTR was obviously lower than that of the control. It can be concluded that icariin has the ability to inhibit the formation and bone resorption activity of osteoclasts, which suggests that icariin should be the effective component for the bone-strengthening action of herb Epimedium.

Chen KM, Ge BF, Liu XY, Ma PH…
Pharmazie May 2007
PMID: 17557750

Horny Goat Weed Icariin Metabolites Enhance Osteoblasts and Inhibit Osteoclasts In Vitro

Abstract

Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro.

Icariin, a principal flavonoid glycoside in Herba Epimedii, is hypothesized to possess beneficial effects on bone mass. Icariin is metabolized to icariside II and then to icaritin in vivo. In the present study, we investigated the in vitro effects of icariin, icariside II and icaritin on both osteoblasts and osteoclasts. After treatment with these compounds at concentrations 10(-5)-10(-8) mol/l, osteoblasts were examined for proliferation, alkaline phosphatase activity, osteocalcin secretion and matrix mineralization, as well as expression levels of bone-related proteins. The formation of osteoclasts was assessed by counting the number of multinucleated TRAP-positive cells. The activity of isolated rat osteoclasts was evaluated by measuring pit area, actin rings and superoxide generation. Icariside II and icaritin increased the mRNA expression of ALP, OC, COL-1 and OPG, but suppressed that of RANKL. In addition, these compounds reduced the number of multinucleated TRAP-positive cells and the osteoclastic resorption area. Also decreases were observed in superoxide generation and actin ring formation that are required for osteoclast survival and bone resorption activity. These findings suggest that icaritin, which was more potent than icariin and icariside II, enhanced the differentiation and proliferation of osteoblasts, and facilitated matrix calcification; meanwhile it inhibited osteoclastic differentiation in both osteoblast-preosteoclast coculture and osteoclast progenitor cell culture, and reduced the motility and bone resorption activity of isolated osteoclasts.

Huang J, Yuan L, Wang X, Zhang TL…
Life Sci. Aug 2007
PMID: 17764702

Icariin Stimulates Proliferation and Differentiation of Human Osteoblasts In Vitro

Abstract

Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2.

Icariine is a flavonoid isolated from a traditional Chinese medicine Epimedium pubescens and is the main active compound of it. Recently, Epimedium pubescens was found to have a therapeutic effect on osteoporosis. But the mechanism is unclear. The aim of the study was to research the effect of Icariine on the proliferation and differentiation of human osteoblasts.
Human osteoblasts were obtained by inducing human marrow mesenchymal stem cells (hMSCs) directionally and were cultured in the presence of various concentrations of Icariine. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of Icariine on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of calcified nodules were assayed to observe the effect on cell differentiation. The expression of bone morphogenetic protein 2 (BMP-2) mRNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR).
Icariine (20 microg/ml) increased significantly the proliferation of human osteoblasts. And, Icariine (10 microg/ml and 20 microg/ml) increased the activity of ALP and the amount of calcified nodules of human osteoblasts significantly (P < 0.05). BMP-2 mRNA synthesis was elevated significantly in response to Icariine (20 microg/ml).
Icariine has a direct stimulatory effect on the proliferation and differentiation of cultured human osteoblast cells in vitro, which may be mediated by increasing production of BMP-2 in osteoblasts.

Yin XX, Chen ZQ, Liu ZJ, Ma QJ…
Chin. Med. J. Feb 2007
PMID: 17355822 | Free Full Text

Horny Goat Weed Phytoestrogens Maintain Bone Density Over 2 Years in Women

Abstract

Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial.

Epimedium brevicornum maxim, a nonleguminous medicinal plant, has been found to be rich in phytoestrogen flavonoids. Results from a 24-month randomized double-blind placebo-controlled clinical trial showed that Epimedium-derived phytoestrogen flavonoids were able to exert beneficial effects on preventing bone loss in late postmenopausal women, without resulting in a detectable hyperplasia effect on the endometrium.
We performed a 24-mo randomized double-blind placebo-controlled clinical trial for evaluating the effect of the Epimedium-derived phytoestrogen flavonoids (EPFs) on BMD, bone turnover biochemical markers, serum estradiol, and endometrial thickness in postmenopausal women.
One hundred healthy late postmenopausal women, with a natural menopausal history within 10 approximately 18 yr and with a BMD T-score at the lumbar spine between -2 and -2.5 SD, were randomized into EPF treatment group (n = 50; a daily dose of 60 mg Icariin, 15 mg Daidzein, and 3 mg Genistein) or placebo control group (n = 50). All participants received 300 mg element calcium daily. BMD, bone turnover biochemical markers, serum estradiol, and endometrial thickness were measured at baseline and 12 and 24 mo after intervention.
Eighty-five participants completed the trial. The patterns of BMD changes were significantly different between the EPF treatment group and placebo control group by repeated-measures ANOVA (p = 0.045 for interaction between time and group at femoral neck; p = 0.006 for interaction between time and group at lumbar spine). BMD was found with a decreased tendency in the placebo control group at 12 (femoral neck: -1.4%, p = 0.104; lumbar spine: -1.7%, p = 0.019) and 24 mo (femoral neck: -1.8%, p = 0.048; lumbar spine: -2.4%, p = 0.002), whereas EPF treatment maintained BMD at 12 (femoral neck: 1.1%, p = 0.285; lumbar spine:1.0%, p = 0.158) and 24 mo (femoral neck: 1.6%, p = 0.148; lumbar spine: 1.3%, p = 0.091). The difference in lumbar spine between the two groups was significant at both 12 (p = 0.044) and 24 mo (p = 0.006), whereas the difference in the femoral neck was marginal at 12 mo (p = 0.061) and significant at 24 mo (p = 0.008). Levels of bone biochemical markers did not change in the placebo control group. In contrast, EPF intervention significantly decreased levels of deoxypyrdinoline at 12 (-43%, p = 0.000) and 24 mo (-39%, p = 0.000), except for osteocalcin at 12 (5.6%, p = 0.530) and 24 mo (10.7%, p = 0.267). A significant difference in deoxypyrdinoline between the two groups was found at both 12 (p = 0.000) and 24 mo (p = 0.001). Furthermore, neither serum estradiol nor endometrial thickness was found to be changed in either groups during the clinical trial.
EPFs exert a beneficial effect on preventing bone loss in late postmenopausal women without resulting in a detectable hyperplasia effect on the endometrium.

Zhang G, Qin L, Shi Y
J. Bone Miner. Res. Jul 2007
PMID: 17419678

Horny Goat Weed and Icariin may Promote Osteoblasts In Vitro

Abstract

Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts.

In a bioassay-guided drug screening for anti-osteoporosis activity, eight flavonol glycosides were isolated from Epimedium koreanum Nakai, which is traditionally widely used in China for the treatment of impotence and osteoporosis. The effects of total flavonoids and flavonol glycosides on the proliferation and differentiation of rat calvarial osteoblast-like cells were evaluated by the MTT method and measuring the activity of alkaline phosphatase (ALP activity). Total flavonoids (1.2 x10(-2) to 6.0 x10(-7) mg/ml) and flavonol glycosides (2.0 x10(-5) to 1.0 x10(-9) mol/l) exhibited a strong inhibition on the proliferation of primary osteoblasts at most concentrations. However, the total flavonoids and icariin significantly promoted the differentiation of primary osteoblasts. The results suggested that flavonoids from E. koreanum Nakai may improve the development of osteoblasts by promoting the ALP activity; and icariin might be one of the active constituents facilitating the differentiation of osteoblasts.

Zhang DW, Cheng Y, Wang NL, Zhang JC…
Phytomedicine Jan 2008
PMID: 17482445

Horny Goat Weed Inhibits Osteoclasts In Vitro

Abstract

Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW 264.7 cells via JNK and NF-kappaB signaling pathways.

Osteoclasts are specialized bone-resorbing cells derived from multipotent myeloid progenitor cells. They play a crucial homeostatic role in skeletal modeling and remodeling and destroy bone in many pathologic conditions. Receptor activator of NF-kappaB ligand (RANKL) is essential to osteoclastogenesis. In this study, we investigated the effects of Ikarisoside A, isolated from Epimedium koreanum (Berberidaceae), on osteoclastogenesis in RANKL-treated murine monocyte/macrophage RAW 264.7 cells. The results indicate that Ikarisoside A is a potent inhibitor of osteoclastogenesis in RANKL-stimulated RAW 264.7 cells as well as in bone marrow-derived macrophages. The inhibitory effect of Ikarisoside A resulted in decrease of osteoclast-specific genes like matrix metalloproteinase 9 (MMP9), tartrate-resistant acid phosphatase (TRAP), receptor activator of NF-kappaB (RANK), and cathepsin K. Moreover, Ikarisoside A blocked the resorbing capacity of RAW 264.7 cells on calcium phosphate-coated plates. Ikarisoside A also has inhibitory effects on the RANKL-mediated activation of NF-kappaB, JNK, and Akt. Finally, Ikarisoside A clearly decreased the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1) as well as the transcriptional activity of NFATc1, the master regulator of osteoclast differentiation. The data indicate that Ikarisoside A has potential for use in treatment of diseases involving abnormal bone lysis such as osteoporosis, rheumatoid arthritis, and periodontal bone erosion.

Choi HJ, Park YR, Nepal M, Choi BY…
Eur. J. Pharmacol. Jun 2010
PMID: 20353769

Horny Goat Weed Stimulates Bone, Inhibits Turnover and Resorption in Smoking Rats

Abstract

Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke.
Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined.
Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover.
The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

Gao SG, Cheng L, Li KH, Liu WH…
BMC Musculoskelet Disord 2012
PMID: 22713117 | Free Full Text