Category Archives: Glucosamine

Glucosamine Reduces Anabolic and Catabolic Processes in Chondrocytes In Vitro

Abstract

Glucosamine reduces anabolic as well as catabolic processes in bovine chondrocytes cultured in alginate.

To investigate the working mechanism of glucosamine (GlcN) by studying the effect of different GlcN derivatives on bovine chondrocytes in alginate beads under anabolic and catabolic culture conditions.
Bovine chondrocytes seeded in alginate beads were treated with different concentrations of glucosamine-sulfate (GlcN-S), glucosamine-hydrochloride (GlcN-HCl) or N-acetyl-glucosamine (GlcN-Ac). Culture conditions were anabolic, 3 day pre-culture followed by 14 days’ treatment; catabolic, extracellular matrix (ECM) breakdown induced by 10ng/ml interleukin-1beta (IL-1beta); or a situation with balance between ECM breakdown and synthesis, 24 days’ pre-culture followed by 14 days’ treatment. The outcome measurements were total glycosaminoglycan (GAG) and DNA content per bead.
In the situation with balance between ECM breakdown and synthesis, GlcN-Ac had a small stimulatory effect on total GAG content. GlcN-S and GlcN-HCl had no effect. Under anabolic condition 5mM GlcN-S and GlcN-HCl significantly reduced total GAG content. GlcN-Ac did not show this effect. IL-1beta induced catabolic effects were prevented by adding 5mM GlcN-HCl. Interference of GlcN with glucose (Gluc) was demonstrated by adding extra Gluc to the medium in the anabolic culture conditions. Increasing extracellular Gluc concentrations diminished the effect of GlcN.
GlcN-S and GlcN-HCl, but not GlcN-Ac, reduce anabolic and catabolic processes. For anabolic processes this was demonstrated by decreased ECM synthesis, for catabolic processes by protection against IL-1beta mediated ECM breakdown. This might be due to interference of GlcN with Gluc utilization. We suggest that the claimed structure modifying effects of GlcN are more likely based on protection against ECM degradation than new ECM production.

Uitterlinden EJ, Jahr H, Koevoet JL, Bierma-Zeinstra SM…
Osteoarthr. Cartil. Nov 2007
PMID: 17543549

Glucosamine Detrimental to Intervertebral Disc In Vitro

Abstract

The effects of glucosamine sulfate on intervertebral disc annulus fibrosus cells in vitro.

Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection.
The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading.
Controlled in vitro laboratory setting.
Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1β and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM, and the authors have no conflicts of interest.
Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose-dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, matrix metalloproteinase-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested.
These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation but not under conditions where mechanical loading is present or in which matrix synthesis is needed.

Sowa GA, Coelho JP, Jacobs LJ, Komperda K…
Spine J Dec 2013
PMID: 24361347

Glucosamine has Negative Effect On Intervertebral Discs

Abstract

Glucosamine Supplementation Demonstrates a Negative Effect On Intervertebral Disc Matrix in an Animal Model of Disc Degeneration.

Study Design. Laboratory based controlled in vivo study Objective. To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration. Summary of Background Data. Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration.Methods. Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses.
Results. The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix.
Conclusions. These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these findings.

Jacobs L, Vo N, Coehlo JP, Dong Q…
Spine Jan 2013
PMID: 23324939

Glucosamine no Effect on Bone Resorption or Formation Markers

Abstract

Evaluation of the effect of glucosamine administration on biomarkers of cartilage and bone metabolism in bicycle racers.

In the present study, the effect of glucosamine administration (1.5 or 3 g/day) on cartilage and bone metabolism was investigated in bicycle racers, using cartilage‑ and bone‑specific biomarkers, including C‑terminal cross‑linked telopeptides of type II collagen (CTX‑II), C‑terminal propeptides of type II procollagen (CPII), N‑terminal telopeptides of bone‑specific type I collagen (NTx) and bone alkaline phosphatase (BAP). The results indicate that CPII (a marker of type II collagen synthesis) was not substantially changed, however, CTX‑II (a marker of type II degradation) was reduced by glucosamine administration, particularly at a dose of 3 g/day. Consistent with these observations, the ratio of CTX‑II/CPII was reduced by glucosamine administration and the effect of glucosamine was dose‑dependent. By contrast, the levels of NTx (a bone resorption marker) and BAP (a bone formation marker) were not altered by glucosamine administration. A previous study by this group reported that glucosamine exerts a chondroprotective action in soccer players by preventing type II collagen degradation but maintaining type II collagen synthesis. Together these observations indicate that glucosamine may exert a chondroprotective action by preventing type II collagen degradation in athletes of various sports, including soccer players and bicycle racers.

Momomura R, Naito K, Igarashi M, Watari T…
Mol Med Rep Mar 2013
PMID: 23358550

Review: Glucosamine Might Increase Osteoblasts and Suppress Resorption

Abstract

Biological activities of glucosamine and its related substances.

Glucosamine (GlcN) has been widely used to treat osteoarthritis (OA) in humans. We revealed that among GlcN-derivatives (GlcN and N-acetyl-d-glucosamine) and uronic acids (d-glucuronic acid and d-galacturonic acid), only GlcN induces the production of hyaluronic acid (HA) by synovial cells and chondrocytes, and the production level is much higher (>10-fold) in synovial cells compared with chondrocytes. Moreover, GlcN increases the expression of HA-synthesizing enzymes (HAS) in synovial cells and chondrocytes. These observations indicate that GlcN likely exhibits the chondroprotective action on OA by modulating the expression of HAS and inducing the production of HA (a major component of glycosaminoglycans contained in the synovial fluid) especially by synovial cells. The pathological change of subchondral bone is implicated in the initiation and progression of cartilage damage in OA. Thus, we further determined the effect of GlcN on the bone metabolism (osteoblastic cell differentiation). The results indicated that GlcN increases the mineralization of mature osteoblasts and the expression of middle and late stage markers (osteopontin and osteocalcin, respectively) during osteoblastic differentiation, and reduces the expression of receptor activator of NF-κB ligand (RANKL), a differentiation and activation factor for osteoclasts. These observations likely suggest that GlcN has a potential to induce the osteoblastic cell differentiation and suppress the osteoclastic cell differentiation, thereby increasing bone matrix deposition and decreasing bone resorption to modulate bone metabolism in OA.

Nagaoka I, Igarashi M, Sakamoto K
Adv. Food Nutr. Res. 2012
PMID: 22361198

Glucosamine Inhibits Bone Resorption in Rats

Abstract

Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine.

Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling.
The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry.
The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels.
Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints.

Ivanovska N, Dimitrova P
Arthritis Res. Ther. 2011
PMID: 21410959 | Free Full Text

Glucosamine Accelerates Fracture Repair in Rats

Abstract

Glucosamine-sulfate on fracture healing.

The aim of this study is to determine whether glucosamine-sulfate has any effects on bone-healing.
A unilateral fracture was created in the tibia of sixty-one female rats. Rats were given no drug or 230 mg/kg glucosamine-sulfate daily. Fractures were analyzed during the first, second and fourth weeks after creation of fracture. Quantitative measurement for new bone formation and osteoblast lining were determined histologically. Semiquantitative score for fracture healing was used for histomorphometric analyses. Bridging bone formation was assessed radiographically.
New bone formation and osteoblast lining were significantly higher in glucosamine-treated group at week 1. Surrounding connective tissue was more cellular and vascular, and the newly formed bone trabecules were present in greater amounts in glucosamine-treated group, compared to control group at week 1 and 4. But radiologically, the control group had better scores than that of the glucosamine-treated group at week 4.
These data demonstrate that daily glucosamine-sulfate administration accelerates early phase of fracture repair in the rat tibia, with increased new bone formation and osteoblast lining histologically, but radiologic bone union is not favored on radiographs.

Uğraş A, Güzel E, Korkusuz P, Kaya I…
Ulus Travma Acil Cerrahi Derg Jan 2013
PMID: 23588972 | Free Full Text

Glucosamine No Effect on Three Bone Markers in Horses

Abstract

Serum concentrations of keratan sulfate, osteocalcin, and pyridinoline crosslinks after oral administration of glucosamine to standardbred horses during race training.

To determine the effects of orally administered glucosamine on concentrations of markers of bone and cartilage metabolism in Standardbred horses during race training.
Twenty 16- to 20-month-old Standardbreds beginning race training.
Horses were randomly assigned to 2 groups. One group received glucosamine hydrochloride (4 g, PO, q 12 h), and the second (control) group received glucose (4 g, PO, q 12 h). Serum samples were obtained prior to onset of the study (baseline) and at regular intervals for 48 weeks for determination of concentrations of keratan sulfate (KS), osteocalcin (OC), and pyridinoline crosslinks (PYD).
Osteocalcin concentrations changed significantly with time; mean serum concentrations were significantly higher than baseline values for samples obtained at 24 to 48 weeks after onset of the study. Although a significant effect of time was observed for mean concentration of KS, concentrations did not differ significantly from baseline values at any time during the study when groups were analyzed separately. However, pooled analysis revealed significant increases of mean serum KS concentration at weeks 24 and 30. Significant changes in serum PYD concentrations were not detected. Oral administration of glucosamine did not significantly affect serum concentrations of any of the markers.
Increased serum OC in clinically normal Standardbreds during race training may reflect bone formation that accompanies adaptive remodeling of the appendicular skeleton. For these experimental conditions, glucosamine did not appear to exert a detectable influence on serum concentrations of these 3 markers of connective tissue metabolism.

Caron JP, Peters TL, Hauptman JG, Eberhart SW…
Am. J. Vet. Res. Aug 2002
PMID: 12171162