Category Archives: Supplements

Uridine Triphosphate Inhibits Bone Growth in Rat Cells In Vitro

Abstract

Osteoblast responses to nucleotides increase during differentiation.

Accumulating evidence suggests that extracellular nucleotides, signaling through P2 receptors, play a role in modulating bone cell function. ATP and ADP stimulate osteoclastic resorption, while ATP and UTP are powerful inhibitors of bone formation by osteoblasts. We investigated changes in the expression of P2 receptors with cell differentiation in primary osteoblast cultures. Rat calvarial osteoblasts, cultured for up to 10 days, were loaded with the intracellular Ca(2+)-sensing fluorophore, Fluo-4 AM, and a fluorescence imaging plate reader was used to measure responses to nucleotide agonists. Peak responses occurred within 20 s and were evoked by ATP or UTP at concentrations as low as 2 microM. Osteoblast number doubled between day 4 and 10 of culture, but the peak intracellular Ca(2+) response to ATP or UTP increased up to 6-fold over the same period, indicating that osteoblast responsiveness to nucleotides increases as cell differentiation proceeds. The approximate order of potency for the most active nucleotide agonists at day 8 of culture was ATP > UTP and ATPgammaS > ADP > UDP, consistent with the expression of functional P2Y(2), P2X(2), P2Y(4), P2Y(1) and P2Y(6) receptors. Smaller responses were elicited by 2-MeSATP, Bz-ATP and alpha,beta-meATP, additionally suggesting the presence of functional P2X(1), P2X(3), P2X(5) and P2X(7) receptors. Expression of mRNA for the ATP- and UTP-selective P2Y(2) receptor increased strongly between day 6 and 15 in primary rat osteoblasts, whereas mRNAs for the P2Y(4) (also ATP/UTP selective) and P2Y(6) (UDP/UTP selective) receptors were highly expressed at intermediate time points. In contrast, mRNA for the cell-proliferation-associated P2X(5) receptor decreased to undetectable as osteoblasts matured, but mRNA for the cell-death-associated P2X(7) receptor was detected at all time points. Similar trends were evident using immunostaining and Western blotting for P2 receptors. Exposure to 10 muM ATP or UTP during days 10-14 of culture was sufficient to cause near-total blockade of the ‘trabecular’ bone nodules formed by osteoblasts; however, UDP and ADP were without effect. Our results show that there is a shift from P2X to P2Y expression during differentiation in culture, with mature osteoblasts preferentially expressing the P2Y(2) receptor and to a lesser extent P2Y(4) and P2Y(6) receptors. Taken together, these data suggest that the P2Y(2) receptor, and possibly the P2Y(4) receptor, could function as ‘off-switches’ for mineralized bone formation.

Orriss IR, Knight GE, Ranasinghe S, Burnstock G…
Bone Aug 2006
PMID: 16616882


Abstract

ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: a novel role for the P2Y2 receptor in bone remodeling.

There is increasing evidence that extracellular nucleotides act on bone cells via multiple P2 receptors. The naturally-occurring ligand ATP is a potent agonist at all receptor subtypes, whereas ADP and UTP only act at specific receptor subtypes. We have reported that the formation and resorptive activity of rodent osteoclasts are stimulated powerfully by both extracellular ATP and its first degradation product, ADP, the latter acting at nanomolar concentrations, probably via the P2Y1 receptor subtype. In the present study, we investigated the actions of ATP, ADP, adenosine, and UTP on osteoblastic function. In 16-21 day cultures of primary rat calvarial osteoblasts, ADP and the selective P2Y1 agonist 2-methylthioADP were without effect on bone nodule formation at concentrations between 1 and 125 microM, as was adenosine. However, UTP, a P2Y2 and P2Y4 receptor agonist, known to be without effect on osteoclast function, strongly inhibited bone nodule formation at concentrations >or= 1 microM. ATP was inhibitory at >or= 10 microM. Rat osteoblasts express P2Y2, but not P2Y4 receptor mRNA, as determined by in situ hybridization. Thus, the low-dose effects of extracellular nucleotides on bone formation and bone resorption appear to be mediated via different P2Y receptor subtypes: ADP, signalling through the P2Y1 receptor on both osteoclasts and osteoblasts, is a powerful stimulator of osteoclast formation and activity, whereas UTP, signalling via the P2Y2 receptor on osteoblasts, blocks bone formation by osteoblasts. ATP, the ‘universal’ agonist, can simultaneously stimulate resorption and inhibit bone formation. These findings suggest that extracellular nucleotides could function locally as important negative modulators of bone metabolism, perhaps contributing to bone loss in a number of pathological states.

Hoebertz A, Mahendran S, Burnstock G, Arnett TR
J. Cell. Biochem. 2002
PMID: 12210747


Abstract

Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling.

An imbalance in the osteogenesis and adipogenesis of bone marrow-derived stromal cells (BMSCs) is a crucial pathological factor in the development of osteoporosis. Growing evidence suggests that extracellular nucleotide signaling involving the P2 receptors plays a significant role in bone metabolism. The aim of the present study was to investigate the effects of uridine triphosphate (UTP) on the osteogenic and adipogenic differentiation of BMSCs, and to elucidate the underlying mechanisms. The differentiation of the BMSCs was determined by measuring the mRNA and protein expression levels of osteogenic- and adipogenic-related markers, alkaline phosphatase (ALP) staining, alizarin red staining and Oil Red O staining. The effects of UTP on BMSC differentiation were assayed using selective P2Y receptor antagonists, small interfering RNA (siRNA) and an intracellular signaling inhibitor. The incubation of the BMSCs with UTP resulted in a dose-dependent decrease in osteogenesis and an increase in adipogenesis, without affecting cell proliferation. Significantly, siRNA targeting the P2Y2 receptor prevented the effects of UTP, whereas the P2Y6 receptor antagonist (MRS2578) and siRNA targeting the P2Y4 receptor had little effect. The activation of P2Y receptors by UTP transduced to the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. This transduction was prevented by the mitogen-activated protein kinase inhibitor (U0126) and siRNA targeting the P2Y2 receptor. U0126 prevented the effects of UTP on osteogenic- and adipogenic-related gene expression after 24 h of culture, as opposed to 3 to 7 days of culture. Thus, our data suggest that UTP suppresses the osteogenic and enhances the adipogenic differentiation of BMSCs by activating the P2Y2 receptor. The ERK1/2 signaling pathway mediates the early stages of this process.

Li W, Wei S, Liu C, Song M…
Int. J. Mol. Med. Jan 2016
PMID: 26531757 | Free Full Text

High Salt Diet May be a Risk Factor for Osteoporosis in Korean Women

Abstract

Association between Urinary Sodium Excretion and Bone Health in Male and Female Adults.

High salt intake is a well-known risk factor for osteoporosis, but the association between bone mass and urinary sodium excretion has not been studied as yet. This study investigates the hypothesis that urinary sodium excretion is negatively associated with bone mass and the risk of osteoporosis.
This cross-sectional study was performed using data from the Korea National Health and Nutrition Examination Survey, 2008-2011. Participants (n = 16,279) were divided into age groups; men were categorized as younger than 50 years of age or 50 years or greater, women were categorized as pre- or post-menopausal. Multivariate linear regression analysis showed that urinary sodium excretion was negatively associated with bone mineral content (BMC) and bone mineral density (BMD) in premenopausal and postmenopausal women. Sodium excretion was negatively associated with BMC and BMD of the lumbar spine in women with normal bone health, osteopenia and osteoporosis, but there was no association in men. Increased sodium excretion was significantly associated with risk for osteoporosis/osteopenia in premenopausal women. This study demonstrates that urinary sodium excretion is negatively associated with bone health, suggesting that high salt intake could be a possible risk factor for osteoporosis in Korean women, but not in men.

Park Y, Kwon SJ, Ha YC
Ann. Nutr. Metab. 2016
PMID: 26967579

Gastrodin Inhibits Osteoclasts Multiple Ways and Stimulates Mesenchymal Stem Cells In Vitro

Abstract

Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro.

Bone is a rigid yet dynamic organ, and this dynamism is mediated by the delicate balance between osteoclastic bone resorption and osteoblastic bone formation. However, excessive activation of osteoclasts is responsible for many bone diseases such as osteoporosis, Paget disease, and tumor bone metastasis. Agents that could inhibit osteoclast formation or function are regarded as promising alternatives to treat osteoclast-related diseases. Recently, traditional Chinese medicine has attracted attention because of its multiple activities in bone metabolism. Among them, gastrodin has been reported as an anti-osteoporosis agent that reduces reactive oxygen species. However, the direct action of gastrodin on osteoclast differentiation and bone resorption, and its underlying molecular mechanism, remain unknown. In this study, we investigated the effects of gastrodin on receptor activator NF-κB ligand (RANKL)-activated osteoclasts formation and bone resorption. Our results showed that gastrodin retarded RANKL-induced osteoclast differentiation efficiently by downregulating transcriptional and translational expression of nuclear factor of activated T cells cl (NFATc1), a major factor in RANKL-mediated osteoclastogenesis. Meanwhile, gastrodin prevented osteoclast maturation and migration by inhibiting the gene expression of dendrocyte expressed seven transmembrane protein (DC-STAMP), an osteoclastic-specific gene that controls cells fusion and movement. And gastrodin prevented RANKL-induced osteoclastic bone erosion in vitro. In addition, gastrodin also stimulated bone mesenchymal stem cell (BMSC) spreading and osseointegration in titanium plate. In summary, gastrodin could prevent osteoclasts formation and bone resorption via blockage of NFATc1 activity, and stimulate osseointegration in vitro. Gastrodin could be developed as a potent phytochemical candidate to treat osteolytic diseases.

Zhou F, Shen Y, Liu B, Chen X…
Biochem. Biophys. Res. Commun. Mar 2017
PMID: 28161640

CoQ10 Increases Osteoblasts and Decreases Resorption in Rats

Abstract

Coenzyme Q10 promotes osteoblast proliferation and differentiation and protects against ovariectomy-induced osteoporosis.

Coenzyme Q10 (CoQ10) is a fat‑soluble vitamin‑like substance used for the treatment of a variety of disorders, including osteoporosis. The exact mechanism underlying CoQ10‑mediated protection against osteoporosis remains to be elucidated. The present study aimed to evaluate the effect of CoQ10 on osteoblastic cell proliferation and differentiation, and therapeutic effects on a rat model of osteoporosis. Following treatment with different concentrations of CoQ10, cell proliferation and differentiation of rat bone marrow stromal cells (BMSCs), and expression of osteoblastogenic markers, were measured. Rats with osteoporosis subjected to ovariectomy (OVX) were treated with different concentrations of CoQ10. Serum levels of estrogen and bone metabolism markers were measured. Micro computed tomography scans were used to analyze morphological changes in bones. In addition, mRNA and protein levels of phosphatidylinositol 3,4,5‑trisphosphate 3‑phosphatase and dual‑specificity protein phosphatase PTEN (PTEN)/phosphatidylinositol 4,5‑bisphosphate 3‑kinase (PI3K)/RAC‑alpha serine/threonine‑protein kinase(AKT), were determined. CoQ10 significantly increased the proliferation and osteogenic differentiation of BMSCs in a dose‑dependent manner, with an increased expression of osteogenic markers. CoQ10 significantly decreased bone resorption but exhibited no effect on serum E2 levels in vivo. CoQ10 markedly enhanced bone formation. Furthermore, the abundance of p‑PI3K and p‑AKT increased while PTEN levels decreased in a dose‑dependent manner following administration of CoQ10. CoQ10 stimulates the proliferation and differentiation of BMSCs and is effective for the treatment of OVX‑induced osteoporosis in rats. The above effects of CoQ10 may be mediated by activation of the PTEN/PI3K/AKT pathway.

Zheng D, Cui C, Yu M, Li X…
Mol Med Rep Oct 2017
PMID: 29115467

Green Tea Extract is Bad for Growing Bones in Rats

Abstract

Long-Term Intake of Green Tea Extract Causes Mal-Conformation of Trabecular Bone Microarchitecture in Growing Rats.

The purpose of this study was to examine the effects of green tea extract (GTE) intake on bone structural and physiological properties, such as bone mass, trabecular bone microarchitecture, cortical bone geometry, and bone mechanical strength, in growing rats. Four-week-old male Wistar rats were divided into the following four eenoups: standard diet feeding for 85 days (S-CON) or 170 days (L-CON), and GTE diet feeding for 85 days (S-GTE) or 170 days (L-GTE). At the end of the experiment, in addition to measurement of circulating bone formation/resorption markers, bone mass, trabecular bone microarchitecture, and cortical bone geometry were analyzed in the left femur, and bone mechanical strength of the right femur was measured. There was no difference in all bone parameters between the S-CON and S-GTE groups. On the other hand, the L-GTE group showed the decrease in some trabecular bone mass/microarchitecture parameters and no change in cortical bone mass/geometry parameters compared with the L-CON group, and consequently the reduction in bone weight corrected by body weight. There was no difference in bone formation/resorption markers and bone mechanical strength between the S-CON and S-GTE groups and also between the L-CON and L-GTE groups. However, serum leptin levels were significantly lower in the L-GTE group than in the L-CON group. Thus, the long-term GTE intake had negative effects on bone, especially trabecular bone loss and microarchitecture mal-conformation, in growing rats.

Minematsu A, Nishii Y, Imagita H, Sakata S
Calcif. Tissue Int. Nov 2017
PMID: 29103160

PQQ Stimulates Osteoblastic Bone Formation in Testosterone-Deficient Mice

Abstract

Pyrroloquinoline quinone prevents testosterone deficiency-induced osteoporosis by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption.

Accumulating evidences suggest that oxidative stress caused and deteriorated the aging related osteoporosis and pyrroloquinoline quinone (PQQ) is a powerful antioxidant. However, it is unclear whether PQQ can prevent testosterone deficiency-induced osteoporosis. In this study, the orchidectomized (ORX) mice were supplemented in diet with/without PQQ for 48 weeks, and compared with each other and with sham mice. Results showed that bone mineral density, trabecular bone volume, collagen deposition and osteoblast number were decreased significantly in ORX mice compared with shame mice, whereas PQQ supplementation largely prevented these alterations. In contrast, osteoclast surface and ratio of RANKL and OPG mRNA relative expression levels were increased significantly in ORX mice compared with shame mice, but were decreased significantly by PQQ supplementation. Furthermore, we found that CFU-f and ALP positive CFU-f forming efficiency and the proliferation of mesenchymal stem cells were reduced significantly in ORX mice compared with shame mice, but were increased significantly by PQQ supplementation. Reactive oxygen species (ROS) levels in thymus were increased, antioxidant enzymes SOD-1, SOD-2, Prdx I and Prdx IV protein expression levels in bony tissue were down-regulated, whereas the protein expression levels of DNA damage response related molecules including γ-H2AX, p53, Chk2 and NFκB-p65 in bony tissue were up-regulated significantly in ORX mice compared with shame mice, whereas PQQ supplementation largely rescued these alterations observed in ORX mice. Our results indicate that PQQ supplementation can prevent testosterone deficiency-induced osteoporosis by inhibiting oxidative stress and DNA damage, stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption.

Wu X, Li J, Zhang H, Wang H…
Am J Transl Res 2017
PMID: 28386349 | Free Full Text

PQQ Increases Osteoblasts in Bmi-1 Knockout Mice

Abstract

Effect and mechanism of pyrroloquinoline quinone on anti-osteoporosis in Bmi-1 knockout mice-Anti-oxidant effect of pyrroloquinoline quinone.

Pyrroloquinoline quinone (PQQ), considered as an ROS scavenger,could protect mitochondrial activity from damage of oxidative stress. To determine the role of PQQ supplement in rescuing long bone osteoporosis in Bmi-1(-/-) mice. We fed Bmi-1 knockout mice a diet supplemented with PQQ (BKO+PQQ), BKO mice with normal diet (BKO) and wild type mice with normal diet (WT) as controls. We compared the differences of skeletal phenotype by means of imaging, histopathological and molecular biology methods in three groups of animals. Results showed that BKO+PQQ mice increased morphology of tibia, decreased X-ray transmittance, and increased bone density, thickness of cortical bone, width of growth plate and trabecular bone mass compared with BKO mice. Our study also investigated that, compared mice BKO, PCNA positive cells percentage of tibial growth plate areas significantly increased in BKO+PQQ mice, and TUNEL positive cells percentage was significantly decreased. To detect the effect of PQQ on osteoblast formation of tibiae. Our results showed, compared with BKO mice, osteogenic cell, osteoblast number areas, ALP, Col I and OCN positive areas significantly increased in tibia of BKO+PQQ mice. Further studies showed that supplemental PQQ played a role in anti-osteoporosis by up-regulating antioxidant capacity, inhibiting oxidative stress and reducing DNA damage, down-regulating CDKI proteins levels, and decreasing cell apoptosis. This study not only reveals the mechanism of PQQ supplementation in anti-osteoporosis, but also provides the experimental and theoretical basis for the clinical application of PQQ in osteoporosis.

Huang Y, Chen N, Miao D
Am J Transl Res 2017
PMID: 29118900 | Free Full Text

Hesperidin Increases Calcium Retention 5.5% in Postmenopausal Women

Abstract

Effect of Hesperidin With and Without a Calcium (Calcilock) Supplement on Bone Health in Postmenopausal Women.

Citrus fruits contain unique flavanones. One of the most abundant of the flavanones, hesperidin, has been shown to prevent bone loss in ovariectomized rats.
The objective of the study was to measure the effect of hesperidin with or without calcium supplementation on bone calcium retention in postmenopausal women. The study was a double-blind, placebo-controlled, randomized-order crossover design of 500 g hesperidin with or without 500 mg calcium supplement in 12 healthy postmenopausal women. Bone calcium retention was determined from urinary excretion of the rare isotope, (41)Ca, from bone. Calcium plus hesperidin, but not hesperidin alone, improved bone calcium retention by 5.5% (P < .04). Calcium supplementation (Calcilock), in combination with hesperidin, is effective at preserving bone in postmenopausal women.

Martin BR, McCabe GP, McCabe L, Jackson GS…
J. Clin. Endocrinol. Metab. Mar 2016
PMID: 26751193

Hesperidin Improves Bone in Insulin-Treated Diabetic Rats

Abstract

The ability of hesperidin compared to that of insulin for preventing osteoporosis induced by type I diabetes in young male albino rats: A histological and biochemical study.

Patients with type I diabetes are at increased risk of osteoporosis even after insulin therapy in adult stage. This study was conducted to compare the efficacy of hesperidin (hesp) therapy versus that of insulin alone in the alleviation of osteoporosis arising from type I diabetes mellitus (T1DM) in young rats.
Hesperidin was administered orally to STZ-induced diabetes. The animals were evaluated morphologically and biochemically and compared with that received daily SC injections of long-acting insulin.
Histologically, we observed the degeneration of osteoblasts and osteocytes, decreased collagen fibers, and disturbed bone turn over markers in untreated DM rats. Hesperidin+ insulin supplementation to diabetic rats caused significant improvement of most of the bone histological and morphometric parameters compared with the insulin-treated group. Furthermore, hesp treatment significantly reduced pro-inflammatory mediators TNFα and NF-κB and increased serum biochemical markers of bone turnover, including osteopontin (OPN), osteocalcin (OC) and decreased serum alkaline phosphatase (ALP).
These data demonstrated that hesp could be considered to be a beneficial drug for preventing diabetic osteoporosis in growing age.

Shehata AS, Amer MG, Abd El-Haleem MR, Karam RA
Exp. Toxicol. Pathol. Apr 2017
PMID: 28132802

Calcium-Collagen Chelate Reduces Sclerostin in Women

Abstract

A calcium-collagen chelate dietary supplement attenuates bone loss in postmenopausal women with osteopenia: a randomized controlled trial.

Menopause leads to an increased risk for osteoporosis in women. Although drug therapies exist, increasing numbers of people prefer alternative therapies such as dietary supplements, for example, calcium, vitamin D, and collagen hydrolysates for the prevention and treatment of osteoporosis. We have previously shown that a 3-month intervention using a calcium-collagen chelate (CC) dietary supplement was efficacious in improving bone mineral density (BMD) and blood biomarkers of bone turnover in osteopenic postmenopausal women. This study reports the long-term efficacy of CC in reducing bone loss in postmenopausal women with osteopenia. Thirty-nine women were randomly assigned to one of two groups: 5 g of CC containing 500 mg of elemental calcium and 200 IU vitamin D (1,25-dihydroxyvitamin D3) or control (500 mg of calcium and 200 IU vitamin D) daily for 12 months. Total body, lumbar, and hip BMD were evaluated at baseline, 6 and 12 months using dual-energy X-ray absorptiometry. Blood was collected at baseline, 6 and 12 months to assess levels of blood biomarkers of bone turnover. Intent-to-treat (ITT) analysis was performed using repeated measures analysis of variance pairwise comparisons and multivariate analysis to assess time and group interactions. The loss of whole body BMD in women taking CC was substantially lower than that of the control group at 12 months in those who completed the study and the ITT analysis, respectively (CC: -1.33% and -0.33% vs. control: -3.75% and -2.17%; P=.026, P=.035). The CC group had significantly reduced levels of sclerostin and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) (P<.05), and higher bone-specific alkaline phosphatase/TRAP5b ratio (P<.05) than control at 6 months. These results support the use of CC in reducing bone loss in osteopenic postmenopausal women.

Elam ML, Johnson SA, Hooshmand S, Feresin RG…
J Med Food Mar 2015
PMID: 25314004