Category Archives: Jumping

Alendronate + Exercise Prevents All Bone Loss During Spaceflight

Abstract

Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight.

We report the results of alendronate ingestion plus exercise in preventing the declines in bone mass and strength and elevated levels of urinary calcium and bone resorption in astronauts during 5.5 months of spaceflight.
This investigation was an international collaboration between NASA and the JAXA space agencies to investigate the potential value of antiresorptive agents to mitigate the well-established bone changes associated with long-duration spaceflight.
We report the results from seven International Space Station (ISS) astronauts who spent a mean of 5.5 months on the ISS and who took an oral dose of 70 mg of alendronate weekly starting 3 weeks before flight and continuing throughout the mission. All crewmembers had available for exercise a treadmill, cycle ergometer, and a resistance exercise device. Our assessment included densitometry of multiple bone regions using X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) and assays of biomarkers of bone metabolism.
In addition to pre- and post-flight measurements, we compared our results to 18 astronauts who flew ISS missions and who exercised using an early model resistance exercise device, called the interim resistance exercise device, and to 11 ISS astronauts who exercised using the newer advanced resistance exercise device (ARED). Our findings indicate that the ARED provided significant attenuation of bone loss compared with the older device although post-flight decreases in the femur neck and hip remained. The combination of the ARED and bisphosphonate attenuated the expected decline in essentially all indices of altered bone physiology during spaceflight including: DXA-determined losses in bone mineral density of the spine, hip, and pelvis, QCT-determined compartmental losses in trabecular and cortical bone mass in the hip, calculated measures of fall and stance computed bone strength of the hip, elevated levels of bone resorption markers, and urinary excretion of calcium.
The combination of exercise plus an antiresoptive drug may be useful for protecting bone health during long-duration spaceflight.

Leblanc A, Matsumoto T, Jones J, Shapiro J…
Osteoporos Int Jul 2013
PMID: 23334732

Similar Results From Minimal vs. High Resistance Exercise in Rats

Abstract

Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise.

This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cancellous bone of the proximal tibia metaphysis (PTM) and femoral neck (FN). Sprague-Dawley rats (male, 6 mo old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or sedentary cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE during 5 wk of training. PTM cancellous volumetric bone mineral density (vBMD), assessed by in vivo peripheral quantitative computed tomography scans, significantly increased in both exercise groups (+9%; P < 0.001), resulting in part from 130% (HRE; P = 0.003) and 213% (LRE; P < 0.0001) greater bone formation (measured by standard histomorphometry) vs. CC. Additionally, mineralizing surface (%MS/BS) and mineral apposition rate were higher (50-90%) in HRE and LRE animals compared with controls. PTM bone microarchitecture was enhanced with LRE, resulting in greater trabecular thickness (P = 0.03) and bone volume fraction (BV/TV; P = 0.04) vs. CC. Resorption surface was reduced by nearly 50% in both exercise paradigms. Increased PTM bone mass in the LRE group translated into a 161% greater elastic modulus (P = 0.04) vs. CC. LRE and HRE increased FN vBMD (10%; P < 0.0001) and bone mineral content (∼ 20%; P < 0.0001) and resulted in significantly greater FN strength vs. CC. For the vast majority of variables, there was no difference in the cancellous bone response between the two exercise groups, although LRE resulted in significantly greater body mass accrual and bone formation response. These results suggest that jumping at minimal resistance provides a similar anabolic stimulus to cancellous bone as jumping at loads exceeding body mass.

Swift JM, Gasier HG, Swift SN, Wiggs MP…
J. Appl. Physiol. Dec 2010
PMID: 20930128 | Free Full Text