Category Archives: Dyslipidemia

LDL, HDL, and Triglyceride Correlations with Bone Density in Postmenopausal Women

Abstract

Plasma lipids and osteoporosis in postmenopausal women.

Many clinical studies have shown that osteoporosis is associated with atherosclerosis and cardiovascular death. Although both high plasma levels of low density lipoprotein cholesterol (LDL-C) and low plasma levels of high density lipoprotein cholesterol (HDL-C) are known to be risk factors for atherosclerosis, it is unclear whether such lipid derangements are also associated with the pathogenesis of osteoporosis. In this study, we evaluated the relationships between plasma levels of total C, LDL-C, HDL-C, or triglyceride (TG) versus bone mineral density (BMD) at the lumbar spine, femoral neck, radius, or total body as well as the presence of vertebral fractures in 214 Japanese postmenopausal women (age range, 47-86 years, mean 62.7). Multiple regression analysis was performed between BMD at each skeletal site versus each lipid level adjusted for age, years after menopause, body mass index (BMI), and %fat. Plasma LDL-C levels were significantly and inversely correlated with the absolute values of both one-third radial (1/3R) and distal radial (UDR) BMD (p<0.01), and tended to be inversely correlated with the absolute values of L-BMD (p=0.051). In contrast, plasma HDL-C levels were significantly and positively correlated with the absolute values of L, 1/3R and UDR BMD (p<0.05). On the other hand, plasma TG levels were significantly lower in women with vertebral fractures than in those without fractures (97.0+/-36.5 vs. 126.4+/-65.8 mg/dl, mean+/-SD, p<0.05). When multivariate logistic regression analysis was performed with the presence of vertebral fractures as a dependent variable and each lipid level adjusted for age, years after menopause, BMI, and %fat as independent variables, TG alone was selected as an index affecting the presence of vertebral fractures (odds ratio: 0.51, 95% confidential interval: 0.29-0.89 per SD increase, p<0.05). Our study showed that plasma LDL-C and HDL-C levels were inversely and positively correlated with both R- and L-BMD values, respectively, while low plasma TG levels were associated with the presence of vertebral fractures in postmenopausal women. Thus, plasma lipids might be related to bone mass and bone fragility, and might be the common factor underlying both osteoporosis and atherosclerosis.

Yamaguchi T, Sugimoto T, Yano S, Yamauchi M…
Endocr. J. Apr 2002
PMID: 12081241 | Free Full Text

Lipoic Acid Prevents the Bone Inhibition and Resorption from a High Fat Diet and Dyslipidemia in Mice

Abstract

Dyslipidemic high-fat diet affects adversely bone metabolism in mice associated with impaired antioxidant capacity.

The present study examined impacts of dyslipidemic high-fat diet on the bone antioxidant system and bone metabolism in growing mice. Furthermore, the relationship was studied between them.
Male C57BL/6 mice (4 wk old) were fed with normal diet, high-fat diet (HFD), or HFD supplemented with 0.1% antioxidant lipoic acid (LA). After 13-wk feeding, the markers of plasma lipids status, bone metabolism in plasma and in urine, and femora oxidative stress were measured. To provide molecular evidence for abnormal bone metabolism affected by HFD, bone cell-specific mRNA levels were tested by real-time quantitative polymerase chain reaction. Moreover, insulin-like growth factor I and tumor necrosis factor-alpha in plasma and their mRNA levels in femur were measured.
The feeding dyslipidemic HFD induced both inhibitory bone formation reactions and enhancement of bone resorption reactions, accompanied by impaired bone antioxidant system, low levels of insulin-like growth factor I in plasma and in bone, and high levels of tumor necrosis factor-alpha in plasma but not in bone. In contrast, these alternatives were prevented completely or partially in mice fed LA supplement. Further, plasma propeptide of І collagen C-propeptide as a marker of bone formation was positively correlated with both total antioxidant capacity (r=0.683, P<0.001) and reduced glutathione/oxidized glutathione ratio (r=0.565, P<0.003) of bone. Cross-linked N-telopeptides of bone type І collagen as a marker of bone resorption was negatively correlated with both total antioxidant capacity (r=-0.753, P<0.001) and glutathione/oxidized glutathione ratio (r=-0.786, P<0.001).
Dyslipidemia induces impaired bone antioxidant system. Oxidative stress could be an important mediator of hyperlipidemia-induced bone loss.

Xiao Y, Cui J, Li YX, Shi YH…
Nutrition Feb 2011
PMID: 20392601