Category Archives: Diet

Olive Oil or Fish Oil, but Not Sunflower Oil, Prevent Age-Related Bone Resorption

Abstract

Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms.

Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats.
Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations.
The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.

Bullon P, Battino M, Varela-Lopez A, Perez-Lopez P…
PLoS ONE 2013
PMID: 24066124 | Free Full Text

Review: Acid-Producing Diets May be Protective When Calcium is High

Abstract

The acid-ash hypothesis revisited: a reassessment of the impact of dietary acidity on bone.

The acid-ash hypothesis states that when there are excess blood protons, bone is eroded to provide alkali to buffer the net acidity and maintain physiologic pH. There is concern that with the typical Western diet, we are permanently in a state of net endogenous acid production, which is gradually reducing bone. While it is clear that a high acid-producing diet generates increased urinary acid and calcium excretion, the effect of diet does not always have the expected results on BMD, fracture risk and markers of bone formation and resorption, suggesting that other factors are influencing the effect of acid/alkali loading on bone. High dietary protein, sodium and phosphorus intake, all of which are necessary for bone formation, were thought to be net acid forming and contribute to low BMD and fracture risk, but appear under certain conditions to be beneficial, with the effect of protein being driven by calcium repletion. Dietary salt can increase short-term markers of bone resorption but may also trigger 1,25(OH)2D synthesis to increase calcium absorption; with low calcium intake, salt intake may be inversely correlated with BMD but with high calcium intake, salt intake was positively correlated with BMD. With respect to the effect of phosphorus, the data are conflicting. Inclusion of an analysis of calcium intake may help to reconcile the contradictory results seen in many of the studies of bone. The acid-ash hypothesis could, therefore, be amended to state that with an acid-producing diet and low calcium intake, bone is eroded to provide alkali to buffer excess protons but where calcium intake is high the acid-producing diet may be protective.

Nicoll R, McLaren Howard J
J. Bone Miner. Metab. Feb 2014
PMID: 24557632

Review: Animal Protein Does Not Cause Osteoporosis; Vegetable Protein is Not Superior

Abstract

Dietary protein: an essential nutrient for bone health.

Nutrition plays a major role in the development and maintenance of bone structures resistant to usual mechanical loadings. In addition to calcium in the presence of an adequate vitamin D supply, proteins represent a key nutrient for bone health, and thereby in the prevention of osteoporosis. In sharp opposition to experimental and clinical evidence, it has been alleged that proteins, particularly those from animal sources, might be deleterious for bone health by inducing chronic metabolic acidosis which in turn would be responsible for increased calciuria and accelerated mineral dissolution. This claim is based on an hypothesis that artificially assembles various notions, including in vitro observations on the physical-chemical property of apatite crystal, short term human studies on the calciuric response to increased protein intakes, as well as retrospective inter-ethnic comparisons on the prevalence of hip fractures. The main purpose of this review is to analyze the evidence that refutes a relation of causality between the elements of this putative patho-physiological “cascade” that purports that animal proteins are causally associated with an increased incidence of osteoporotic fractures. In contrast, many experimental and clinical published data concur to indicate that low protein intake negatively affects bone health. Thus, selective deficiency in dietary proteins causes marked deterioration in bone mass, micro architecture and strength, the hallmark of osteoporosis. In the elderly, low protein intakes are often observed in patients with hip fracture. In these patients intervention study after orthopedic management demonstrates that protein supplementation as given in the form of casein, attenuates post-fracture bone loss, increases muscles strength, reduces medical complications and hospital stay. In agreement with both experimental and clinical intervention studies, large prospective epidemiologic observations indicate that relatively high protein intakes, including those from animal sources are associated with increased bone mineral mass and reduced incidence of osteoporotic fractures. As to the increased calciuria that can be observed in response to an augmentation in either animal or vegetal proteins it can be explained by a stimulation of the intestinal calcium absorption. Dietary proteins also enhance IGF-1, a factor that exerts positive activity on skeletal development and bone formation. Consequently, dietary proteins are as essential as calcium and vitamin D for bone health and osteoporosis prevention. Furthermore, there is no consistent evidence for superiority of vegetal over animal proteins on calcium metabolism, bone loss prevention and risk reduction of fragility fractures.

Bonjour JP
J Am Coll Nutr Dec 2005
PMID: 16373952

High-Protein + Adequate Calcium is Better for Maintaining Bone Than Normal-Protein Diets in Rats

Abstract

Effects of the amount and source of dietary protein on bone status in rats.

This study examined the effects of the dietary amount and source of protein on bone status in rats. 140 male Wistar rats aged 8 weeks were randomly allocated to 4 groups (n = 35) fed normal-protein (NP, 10% richness) or high-protein (HP, 45% richness) diets based on whey protein (WP) or soy protein (SP) sources for 12 weeks. Plasma urea was 46% higher for the HP compared to the NP diet (p < 0.001). Urinary calcium was 65% higher for the HP compared to the NP and 60% higher for the WP compared to the SP diets (all, p < 0.001). Urinary pH was 8% more acidic in the HP compared to the NP diet (p < 0.001) and 4% in the WP compared to the SP diet (p < 0.01). The plasma osteocalcin concentration was 19% higher for the NP compared to the HP (p < 0.05) and 25% for the SP compared to the WP diets (p < 0.01). Femur ash, metaphyseal and diaphyseal cross-sectional, trabecular and cortical areas were 3% higher in the HP compared to the NP diet (all, p < 0.05). Femur diaphyseal periosteal and endocortical perimeters were also 3% higher in the HP compared to the NP diet (both, p < 0.01). Groups fed the SP diet showed 2% higher femur ash percentage, 7% higher calcium content (both, p < 0.001), and 3% higher diaphyseal cortical area and thickness (both, p < 0.05) than those fed the WP diet. Some interactions were found, such as the greater effects of the SP diet on decreasing the higher plasma urea concentration promoted by the intake of the HP diet (p < 0.001). Under adequate Ca intake, HP diets could better maintain bone properties than NP diets, even with increasing some acidity markers, which could be reduced by the intake of SP sources.

Nebot E, Erben RG, Porres JM, Femia P…
Food Funct Apr 2014
PMID: 24531397

Urine pH or Acid Excretion Doesn’t Predict Bone Density or Fractures

Abstract

Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study.

The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis. The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults.
Design: Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index.
There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders.
Urine pH and urine acid excretion do not predict osteoporosis risk.

Fenton TR, Eliasziw M, Tough SC, Lyon AW…
BMC Musculoskelet Disord 2010
PMID: 20459740 | Free Full Text


The evidence to support the acid-ash hypothesis of osteoporosis predominantly comes from studies using changes in urine calcium as the outcome [6,8-12,46], some prospective observational studies [16,18,19,47] and one randomized trial [13]. Although one randomized trial has supported the hypothesis [13], another did not [40]. The randomized trial [13] supporting the hypothesis did not use concealment of allocation, a study quality indicator for randomized studies that is important to avoid bias during the randomization process [48]. Without concealment of allocation, investigators can influence the allocation of individuals into the treatment groups, invalidating the randomization. Trials that do not have concealed allocation can overestimate effectiveness of a therapy [49]. The more recent randomized trial, that concealed allocation, did not reveal any protective effect of either potassium citrate or increased fruit and vegetable consumption on change in BMD [14].

Three previous prospective cohort studies of the hypothesis reported some protective associations between fruit and vegetable, potassium, and/or vitamin C intakes and bone health [16,18,19], and thus may support the hypothesis, while two more recent cohort studies do not support it [50,51]. One of the positive reporting studies did not see a significant protective association for potassium once potential confounders were controlled [16]. Further, it is possible that the associations in agreement with the hypothesis in the cohort studies were due to uncontrolled confounding by estrogen status [19], baseline BMD [16,19], change of weight status during follow-up [18], and/or vitamin D status [16,18,19,47].

Further, three recent meta-analyses of the acid-ash hypothesis do not support the hypothesis. First, a meta-analysis of calcium balance studies, restricted to studies of superior methodology, revealed no association between net acid excretion and calcium balance, in spite of the strong relationship between net acid excretion and urinary calcium [52]. A systematic review and meta-analysis of the effect of protein intake on bone health revealed a small beneficial effect of protein supplementation on lumbar spine BMD in randomized placebo-controlled trials [53]. Further, the acid-ash hypothesis predicts higher phosphate intakes would be associated with increased urinary calcium and lower calcium balance, but this was not supported by a third recent meta-analysis [54].

Review: Alkaline Diet is Not Supported by Evidence

Abstract

Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill’s epidemiologic criteria for causality.

Modern diets have been suggested to increase systemic acid load and net acid excretion. In response, alkaline diets and products are marketed to avoid or counteract this acid, help the body regulate its pH to prevent and cure disease. The objective of this systematic review was to evaluate causal relationships between dietary acid load and osteoporosis using Hill’s criteria.
Systematic review and meta-analysis. We systematically searched published literature for randomized intervention trials, prospective cohort studies, and meta-analyses of the acid-ash or acid-base diet hypothesis with bone-related outcomes, in which the diet acid load was altered, or an alkaline diet or alkaline salts were provided, to healthy human adults. Cellular mechanism studies were also systematically examined.
Fifty-five of 238 studies met the inclusion criteria: 22 randomized interventions, 2 meta-analyses, and 11 prospective observational studies of bone health outcomes including: urine calcium excretion, calcium balance or retention, changes of bone mineral density, or fractures, among healthy adults in which acid and/or alkaline intakes were manipulated or observed through foods or supplements; and 19 in vitro cell studies which examined the hypothesized mechanism. Urine calcium excretion rates were consistent with osteoporosis development; however calcium balance studies did not demonstrate loss of whole body calcium with higher net acid excretion. Several weaknesses regarding the acid-ash hypothesis were uncovered: No intervention studies provided direct evidence of osteoporosis progression (fragility fractures, or bone strength as measured using biopsy). The supporting prospective cohort studies were not controlled regarding important osteoporosis risk factors including: weight loss during follow-up, family history of osteoporosis, baseline bone mineral density, and estrogen status. No study revealed a biologic mechanism functioning at physiological pH. Finally, randomized studies did not provide evidence for an adverse role of phosphate, milk, and grain foods in osteoporosis.
A causal association between dietary acid load and osteoporotic bone disease is not supported by evidence and there is no evidence that an alkaline diet is protective of bone health.

Fenton TR, Tough SC, Lyon AW, Eliasziw M…
Nutr J 2011
PMID: 21529374 | Free Full Text


 

Alkaline Diet is Not Justified

Abstract

Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance.

The acid-ash hypothesis posits that protein and grain foods, with a low potassium intake, produce a diet acid load, net acid excretion (NAE), increased urine calcium, and release of calcium from the skeleton, leading to osteoporosis. The objectives of this meta-analysis were to assess the effect of changes in NAE, by manipulation of healthy adult subjects’ acid-base intakes, on urine calcium, calcium balance, and a marker of bone metabolism, N-telopeptides. This meta-analysis was limited to studies that used superior methodological quality for the study of calcium metabolism. We systematically searched the literature and included studies if subjects were randomized to the interventions and followed the recommendations of the Institute of Medicine’s Panel on Calcium and Related Nutrients for calcium studies. Five of 16 studies met the inclusion criteria. The studies altered the amount and/or type of protein. Despite a significant linear relationship between an increase in NAE and urinary calcium (p < 0.0001), there was no relationship between a change of NAE and a change of calcium balance (p = 0.38; power = 94%). There was no relationship between a change of NAE and a change in the marker of bone metabolism, N-telopeptides (p = 0.95). In conclusion, this meta-analysis does not support the concept that the calciuria associated with higher NAE reflects a net loss of whole body calcium. There is no evidence from superior quality balance studies that increasing the diet acid load promotes skeletal bone mineral loss or osteoporosis. Changes of urine calcium do not accurately represent calcium balance. Promotion of the “alkaline diet” to prevent calcium loss is not justified.

Fenton TR, Lyon AW, Eliasziw M, Tough SC…
J. Bone Miner. Res. Nov 2009
PMID: 19419322

Review: High-Protein + Calcium + Fruit + Veggies is Important for Bone Health

Abstract

Acid diet (high-meat protein) effects on calcium metabolism and bone health.

Update recent advancements regarding the effect of high-animal protein intakes on calcium utilization and bone health.
Increased potential renal acid load resulting from a high protein (intake above the current Recommended Dietary Allowance of 0.8 g protein/kg body weight) intake has been closely associated with increased urinary calcium excretion. However, recent findings do not support the assumption that bone is lost to provide the extra calcium found in urine. Neither whole body calcium balance is, nor are bone status indicators, negatively affected by the increased acid load. Contrary to the supposed detrimental effect of protein, the majority of epidemiological studies have shown that long-term high-protein intake increases bone mineral density and reduces bone fracture incidence. The beneficial effects of protein such as increasing intestinal calcium absorption and circulating IGF-I whereas lowering serum parathyroid hormone sufficiently offset any negative effects of the acid load of protein on bone health.
On the basis of recent findings, consuming protein (including that from meat) higher than current Recommended Dietary Allowance for protein is beneficial to calcium utilization and bone health, especially in the elderly. A high-protein diet with adequate calcium and fruits and vegetables is important for bone health and osteoporosis prevention.

Cao JJ, Nielsen FH
Curr Opin Clin Nutr Metab Care Nov 2010
PMID: 20717017

High-Protein Short-Term Diets are Not Detrimental to Bone

Abstract

Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized controlled trial.

Although consuming dietary protein above current recommendations during energy deficit (ED) preserves lean body mass, concerns have been raised regarding the effects of high-protein diets on bone health. The objective was to determine whether calcium homeostasis and bone turnover are affected by high-protein diets during weight maintenance (WM) and ED.

In a randomized, parallel-design, controlled trial of 32 men and 7 women, volunteers were assigned diets providing protein at 0.8 [Recommended Dietary Allowance (RDA)], 1.6 (2 × RDA), or 2.4 (3 × RDA) g · kg(-1) · d(-1) for 31 d. Ten days of WM preceded 21 d of ED, during which total daily ED was 40%, achieved by reduced dietary energy intake (∼30%) and increased physical activity (∼10%). The macronutrient composition (protein g · kg(-1) · d(-1) and % fat) was held constant from WM to ED. Calcium absorption (ratio of (44)Ca to (42)Ca) and circulating indexes of bone turnover were determined at day 8 (WM) and day 29 (ED).
Regardless of energy state, mean (±SEM) urinary pH was lower (P < 0.05) at 2 × RDA (6.28 ± 0.05) and 3 × RDA (6.23 ± 0.06) than at the RDA (6.54 ± 0.06). However, protein had no effect on either urinary calcium excretion (P > 0.05) or the amount of calcium retained (P > 0.05). ED decreased serum insulin-like growth factor I concentrations and increased serum tartrate-resistant acid phosphatase and 25-hydroxyvitamin D concentrations (P < 0.01). Remaining markers of bone turnover and whole-body bone mineral density and content were not affected by either the protein level or ED (P > 0.05).
These data demonstrate that short-term consumption of high-protein diets does not disrupt calcium homeostasis and is not detrimental to skeletal integrity.

Cao JJ, Pasiakos SM, Margolis LM, Sauter ER…
Am. J. Clin. Nutr. Feb 2014
PMID: 24284444

Review: Protein Benefits for Bone may Require Calcium

Abstract

Dietary protein is beneficial to bone health under conditions of adequate calcium intake: an update on clinical research.

To underscore recent clinical studies, which evaluate the association between dietary protein and bone health.
Epidemiologic studies show greater protein intake to be beneficial to bone health in adults. In addition, randomized controlled trials show that protein’s positive effect on bone health is augmented by increased calcium intake. The relation between dietary protein and fracture risk is unclear. Dietary protein may positively impact bone health by increasing muscle mass, increasing calcium absorption, suppressing parathyroid hormone, and augmenting insulin-like growth factor 1 production; but the effects of other factors that contribute to this association, such as dietary protein dose and timing response, require further research.
The positive effects of protein intake on bone health may only be beneficial under conditions of adequate calcium intake. Dietary protein’s relation with fracture risk requires further investigation.

Mangano KM, Sahni S, Kerstetter JE
Curr Opin Clin Nutr Metab Care Jan 2014
PMID: 24316688