Category Archives: Diet

Hydrolyzed Collagen as Effective as Raloxifene in Mice

Abstract

Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice.

This study evaluates the effect of hydrolyzed collagen (HC) on bone health of ovariectomized mice (OVX) at different ages. Twenty-six weeks after the OVX procedure, HC ingestion was still able to improve significantly bone mineral density (BMD) and some femur biomechanical parameters. Moreover, HC ingestion for 1 month before surgery prevented BMD decrease.
HC can play an important role in preserving BMD before osteoporosis appears. The aim of this study was to evaluate the effect of HC on bone health of ovariectomized mice at different ages.
Female C3H mice were either OVX at 3 or 6 months and fed for 6 months (first experiment) or 3 months (second experiment) with diet including 0, 10, or 25 g/kg of HC. In the second experiment, one group received HC 1 month before surgery, and two groups received the supplementation immediately after surgery, one fed ad libitum and the other by gavage. Mice treated with raloxifene were used as a positive control. BMD, femur intrinsic and extrinsic biomechanical properties, and type I collagen C-terminal telopeptide were measured after 12 and 26 weeks. Food intake and spontaneous physical activity were also recorded.
The OVX procedure increased body weight, while food intake decreased, thus suggesting that resting metabolism was decreased. Ingestion of 25 g/kg of HC for 3 or 6 months reduced bone loss significantly in, respectively, 3- and 6-month-old OVX mice. The lowest HC concentration was less efficient. HC ingestion for 3 months is as efficient as raloxifene to protect 3-month-old OVX mice from bone loss. Our results also demonstrated that HC ingestion before surgery prevented the BMD decreases.
This study confirms that dietary collagen reduces bone loss in OVX mice by increasing the diameter of the cortical areas of femurs and can have a preventive effect.

Guillerminet F, Fabien-Soulé V, Even PC, Tomé D…
Osteoporos Int Jul 2012
PMID: 21927918

Hydrolyzed Collagen Improves Bone in Mice

Abstract

Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice: an in vitro and in vivo study.

Collagen has an important structural function in several organs of the body, especially in bone and cartilage. The aim of this study was to investigate the effect of hydrolyzed collagen on bone metabolism, especially in the perspective of osteoporosis treatment and understanding of its mechanism of action. An in vivo study was carried out in 12-week-old female C3H/HeN mice. These were either ovariectomized (OVX) or sham-operated (SHAM) and fed for 12 weeks with a diet containing 10 or 25 g/kg of hydrolyzed collagen. We measured bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA). C-terminal telopeptide of type I collagen (CTX), marker of bone resorption, and alkaline phosphatase (ALP), marker of bone formation, were assayed after 4 and 12 weeks. Femur biomechanical properties were studied by a 3-point bending test and bone architecture by microtomography. The BMD for OVX mice fed the diet including 25 g/kg of hydrolyzed collagen was significantly higher as compared to OVX mice. The blood CTX level significantly decreased when mice were fed with either of the diets containing hydrolyzed collagen. Finally, we have shown a significant increase in bone strength correlated to geometrical changes for the OVX mice fed the 25 g/kg hydrolyzed collagen diet. Primary cultures of murine bone cells were established from the tibia and femur marrow of BALB/c mice. The growth and differentiation of osteoclasts and osteoblasts cultured with different concentrations (from 0.2 to 1.0 mg/mL) of bovine, porcine or fish hydrolyzed collagens (2 or 5 kDa) were measured. Hydrolyzed collagens (2 or 5 kDa) in the tissue culture medium did not have any significant effects on cell growth as compared to controls. However, there was a significant and dose-dependent increase in ALP activity, a well-known marker of osteogenesis, and a decrease in octeoclast activity in primary culture of bone cells cultured with hydrolyzed collagens (2 kDa only) as compared to the control. It is concluded that dietary hydrolyzed collagen increases osteoblast activity (as measured in primary tissue culture), which acts on bone remodeling and increases the external diameter of cortical areas of the femurs.

Guillerminet F, Beaupied H, Fabien-Soulé V, Tomé D…
Bone Mar 2010
PMID: 19895915

Cowpeas Increase Bone Density in Ovariectomized Rats

Abstract

Effect of dietary legumes on bone-specific gene expression in ovariectomized rats.

In previous studies, we found that the consumption of legumes decreased bone turnover in ovariectomized rats. The purpose of the present study is to determine whether the protective effects on bone mineral density (BMD) and the microarchitecture of a diet containing legumes are comparable. In addition, we aim to determine their protective actions in bones by studying bone specific gene expression. Forty-two Sprague-Dawley rats are being divided into six groups during the 12 week study: 1) rats that underwent sham operations (Sham), 2) ovariectomized rats fed an AIN-93M diet (OVX), 3) ovariectomized rats fed an AIN-93M diet with soybeans (OVX-S), 4) ovariectomized rats fed an AIN-93M diet with mung beans (OVX-M), 5) ovariectomized rats fed an AIN-93M diet with cowpeas (OVX-C), and 6) ovariectomized rats fed an AIN-93M diet with azuki beans (OVX-A). Consumption of legumes significantly increased BMD of the spine and femur and bone volume of the femur compared to the OVX. Serum calcium and phosphate ratio, osteocalcin, expression of osteoprotegerin (OPG), and the receptor activator of nuclear factor κB ligand (RANKL) ratio increased significantly, while urinary excretion of calcium and deoxypyridinoline and expression of TNF-α and IL-6 were significantly reduced in OVX rats fed legumes, compared to OVX rats that were not fed legumes. This study demonstrates that consumption of legumes has a beneficial effect on bone through modulation of OPG and RANKL expression in ovariectomized rats and that legume consumption can help compensate for an estrogen-deficiency by preventing bone loss induced by ovarian hormone deficiency.

Park Y, Moon HJ, Paik DJ, Kim DY
Nutr Res Pract Jun 2013
PMID: 23766879 | Free Full Text

Legumes, Especially Cowpeas, Improve Bone Markers in Rats

Abstract

Consumption of legumes improves certain bone markers in ovariectomized rats.

Soybeans are known to protect against osteoporosis, but other legumes frequently consumed in Asia have not been studied to learn if they have a similar protective effect. This study investigated the hypothesis that consumption of soybean, mung bean, cowpea, and adzuki bean has beneficial effects on bone biomarkers in ovariectomized rats. Female Sprague-Dawley rats were either sham operated (sham; n = 7) or surgically ovariectomized and then fed a regular AIN-93M diet (OVX; n = 7) or AIN-93M containing soybean (n = 7), mung bean (n = 7), cowpea (n = 7), or adzuki beans (n = 7) for 10 weeks. No bean consumption significantly altered the body, subcutaneous fat, or uterus weight; however, consumption significantly increased the serum calcium/phosphorous ratio and decreased urinary calcium excretion compared with those of the OVX group. Serum concentration of 17β-estradiol was significantly lower in the OVX group compared with that of the sham group and was lowest in the group fed OVX diet containing soybean. Serum osteocalcin concentration was significantly higher in all OVX rats given a diet with beans compared with the same diet without, but urinary deoxypyridinoline excretion was lowest in the group fed OVX diet containing cowpea. There were no significant differences in bone mineral density or bone mineral content of the right femur, tibia, or lumbar spine or in the trabecular bone volume of the tibia among the diet groups. In conclusion, the consumption of soybean, mung bean, cowpea, and adzuki bean in OVX rats improved osteocalcin, but only those fed cowpea showed decreased bone resorption biomarker, suggesting that cowpea may have the most protective effect on bone in OVX rats.

Lee SH, Jin N, Paik DJ, Kim DY…
Nutr Res May 2011
PMID: 21636018

Saturated Fat Associated with Lower Bone Density; Protein or Vitamin C No Help

Abstract

Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III.

Mounting evidence indicates that the amount and type of fat in the diet can have important effects on bone health. Most of this evidence is derived from animal studies. Of the few human studies that have been conducted, relatively small numbers of subjects and/or primarily female subjects were included. The present study assessed the relation of dietary fat to hip bone mineral density (BMD) in men and women using NHANES III data (n = 14,850). Multivariate models using SAS-callable SUDAAN were used to adjust for the sampling scheme. Models were adjusted for age, sex, weight, height, race, total energy and calcium intakes, smoking, and weight-bearing exercise. Data from women were further adjusted for use of hormone replacement therapy. Including dietary protein, vitamin C, and beta-carotene in the model did not influence the outcome. Analysis of covariance was used to generate mean BMD by quintile of total and saturated fat intake for 4 sex/age groups. Saturated fat intake was negatively associated with BMD at several hip sites. The greatest effects were seen among men < 50 y old (linear trend P = 0.004 for the femoral neck). For the femoral neck, adjusted mean BMD was 4.3% less among men with the highest compared with the lowest quintile of saturated fat intake (BMD, 95% CI: highest quintile: 0.922 g/cm2, 0.909-0.935; lowest quintile: 0.963 g/cm2, 95% CI: 0.950-0.976). These data indicate that BMD is negatively associated with saturated fat intake, and that men may be particularly vulnerable to these effects.

Corwin RL, Hartman TJ, Maczuga SA, Graubard BI
J. Nutr. Jan 2006
PMID: 16365076 | Free Full Text

Lipoic Acid Prevents the Bone Inhibition and Resorption from a High Fat Diet and Dyslipidemia in Mice

Abstract

Dyslipidemic high-fat diet affects adversely bone metabolism in mice associated with impaired antioxidant capacity.

The present study examined impacts of dyslipidemic high-fat diet on the bone antioxidant system and bone metabolism in growing mice. Furthermore, the relationship was studied between them.
Male C57BL/6 mice (4 wk old) were fed with normal diet, high-fat diet (HFD), or HFD supplemented with 0.1% antioxidant lipoic acid (LA). After 13-wk feeding, the markers of plasma lipids status, bone metabolism in plasma and in urine, and femora oxidative stress were measured. To provide molecular evidence for abnormal bone metabolism affected by HFD, bone cell-specific mRNA levels were tested by real-time quantitative polymerase chain reaction. Moreover, insulin-like growth factor I and tumor necrosis factor-alpha in plasma and their mRNA levels in femur were measured.
The feeding dyslipidemic HFD induced both inhibitory bone formation reactions and enhancement of bone resorption reactions, accompanied by impaired bone antioxidant system, low levels of insulin-like growth factor I in plasma and in bone, and high levels of tumor necrosis factor-alpha in plasma but not in bone. In contrast, these alternatives were prevented completely or partially in mice fed LA supplement. Further, plasma propeptide of І collagen C-propeptide as a marker of bone formation was positively correlated with both total antioxidant capacity (r=0.683, P<0.001) and reduced glutathione/oxidized glutathione ratio (r=0.565, P<0.003) of bone. Cross-linked N-telopeptides of bone type І collagen as a marker of bone resorption was negatively correlated with both total antioxidant capacity (r=-0.753, P<0.001) and glutathione/oxidized glutathione ratio (r=-0.786, P<0.001).
Dyslipidemia induces impaired bone antioxidant system. Oxidative stress could be an important mediator of hyperlipidemia-induced bone loss.

Xiao Y, Cui J, Li YX, Shi YH…
Nutrition Feb 2011
PMID: 20392601

Ellagic Acid and Walnut Have “Remarkable Osteoblastic Activity”

Abstract

Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483.

Epidemiological studies suggest that the incidence of CVD and postmenopausal osteoporosis is low in the Mediterranean area, where herbs and nuts, among others, play an important role in nutrition. In the present study, we sought a role of walnuts (Juglans regia L.) in endothelial and bone-cell function. As the endothelial cell expression of adhesion molecules has been recognised as an early step in inflammation and atherogenesis, we examined the effect of walnut methanolic extract and ellagic acid, one of its major polyphenolic components (as shown by HPLC analysis), on the expression of vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1 in human aortic endothelial cells. After incubating the cells with TNF-alpha (1 ng/ml) in the absence and in the presence of walnut extract (10-200 microg/ml) or ellagic acid (10- 7-10- 5 m), the VCAM-1 and ICAM-1 expression was quantified by cell-ELISA. We further evaluated the effect of walnut extract (10-50 microg/ml), in comparison with ellagic acid (10- 9-10- 6m), on nodule formation in the osteoblastic cell line KS483. Walnut extract and ellagic acid decreased significantly the TNF-alpha-induced endothelial expression of both VCAM-1 and ICAM-1 (P < 0.01; P < 0.001). Both walnut extract (at 10-25 microg/ml) and ellagic acid (at 10- 9-10- 8 m) induced nodule formation in KS483 osteoblasts. The present results suggest that the walnut extract has a high anti-atherogenic potential and a remarkable osteoblastic activity, an effect mediated, at least in part, by its major component ellagic acid. Such findings implicate the beneficial effect of a walnut-enriched diet on cardioprotection and bone loss.

Papoutsi Z, Kassi E, Chinou I, Halabalaki M…
Br. J. Nutr. Apr 2008
PMID: 17916277

Review: Malnutrition Associated with Decreased Bone Mass

Abstract

Assessment and management of nutrition in older people and its importance to health.

Nutrition is an important element of health in the older population and affects the aging process. The prevalence of malnutrition is increasing in this population and is associated with a decline in: functional status, impaired muscle function, decreased bone mass, immune dysfunction, anemia, reduced cognitive function, poor wound healing, delayed recovery from surgery, higher hospital readmission rates, and mortality. Older people often have reduced appetite and energy expenditure, which, coupled with a decline in biological and physiological functions such as reduced lean body mass, changes in cytokine and hormonal level, and changes in fluid electrolyte regulation, delay gastric emptying and diminish senses of smell and taste. In addition pathologic changes of aging such as chronic diseases and psychological illness all play a role in the complex etiology of malnutrition in older people. Nutritional assessment is important to identify and treat patients at risk, the Malnutrition Universal Screening Tool being commonly used in clinical practice. Management requires a holistic approach, and underlying causes such as chronic illness, depression, medication and social isolation must be treated. Patients with physical or cognitive impairment require special care and attention. Oral supplements or enteral feeding should be considered in patients at high risk or in patients unable to meet daily requirements.

Ahmed T, Haboubi N
Clin Interv Aging 2010
PMID: 20711440 | Free Full Text


The full study also has this comment about protein:

Concerns about the detrimental affects of increased protein intake on bone health, renal function, neurological function and cardiovascular function are generally unfounded. It has been recommended that the RDA intake of 1.5 g protein/kg body weight per day is a reasonable intake in older people to optimize protein intake in terms of health and function.

Review: Reduction in Food Associated with Decreased Bone Mass in Older Persons

Abstract

Physiological and psychosocial age-related changes associated with reduced food intake in older persons.

Dietary intake changes during the course of aging. Normally an increase in food intake is observed around 55 years of age, which is followed by a reduction in food intake in individuals over 65 years of age. This reduction in dietary intake results in lowered levels of body fat and body weight, a phenomenon known as anorexia of aging. Anorexia of aging has a variety of consequences, including a decline in functional status, impaired muscle function, decreased bone mass, micronutrient deficiencies, reduced cognitive functions, increased hospital admission and even premature death. Several changes during lifetime have been implicated to play a role in the reduction in food intake and the development of anorexia of aging. These changes are both physiological, involving peripheral hormones, senses and central brain regulation and non-physiological, with differences in psychological and social factors. In the present review, we will focus on age-related changes in physiological and especially non-physiological factors, that play a role in the age-related changes in food intake and in the etiology of anorexia of aging. At the end we conclude with suggestions for future nutritional research to gain greater understanding of the development of anorexia of aging which could lead to earlier detection and better prevention.

de Boer A, Ter Horst GJ, Lorist MM
Ageing Res. Rev. Jan 2013
PMID: 22974653

Olive Oleuropein and Hydroxytyrosol Prevents Bone Loss in Mice

Abstract

Olive polyphenol hydroxytyrosol prevents bone loss.

Polyphenols reportedly exert physiological effects against diseases such as cancer, arteriosclerosis, hyperlipidemia and osteoporosis. The present study was designed to evaluate the effects of oleuropein, hydroxytyrosol and tyrosol, the major polyphenols in olives, on bone formation using cultured osteoblasts and osteoclasts, and on bone loss in ovariectomized mice. No polyphenols markedly affected the proliferation of osteoblastic MC3T3-E1 cells at concentrations up to 10μM. Oleuropein and hydroxytyrosol at 10 to 100μM had no effect on the production of type I collagen and the activity of alkaline phosphatase in MC3T3-E1 cells, but stimulated the deposition of calcium in a dose-dependent manner. In contrast, oleuropein at 10 to 100μM and hydroxytyrosol at 50 to 100μM inhibited the formation of multinucleated osteoclasts in a dose-dependent manner. Furthermore, both compounds suppressed the bone loss of trabecular bone in femurs of ovariectomized mice (6-week-old BALB/c female mice), while hydroxytyrosol attenuated H(2)O(2) levels in MC3T3-E1 cells. Our findings indicate that the olive polyphenols oleuropein and hydroxytyrosol may have critical effects on the formation and maintenance of bone, and can be used as effective remedies in the treatment of osteoporosis symptoms.

Hagiwara K, Goto T, Araki M, Miyazaki H…
Eur. J. Pharmacol. Jul 2011
PMID: 21539839