Abstract
Evidence for a prospective anti-osteoporosis effect of black tea (Camellia Sinensis) extract in a bilaterally ovariectomized rat model.
The purpose of this study was to examine whether whole aqueous black tea extract (BTE) prevents bone loss induced by ovarian hormone deficiency. Eighteen 95-100 days old female albino rats were randomly assigned to three treatment groups [sham -operated control (sham); bilaterally ovariectomized (ovx) and ovx + aqueous black tea extract (BTE) ] and sacrificed after 28 days. All animals were fed a standard laboratory diet with free access to deionized water except on days of urinary parameter studies when animals were given only calcium free deionized water during the entire 24 h period of urine collection. Body weight study revealed that rats in the ovx group had significantly higher final body weight than rats in the sham group. This higher final body weight was not observed in animals receiving BTE. The ovx group also had significantly higher abdominal fat mass and liver weight and significantly lower uterus, right kidney and left kidney weights than in other two groups. All these organ weight changes in ovx group also were not observed in animals receiving BTE. Results of urinary studies revealed that rats in the ovx group had significantly higher urinary excretion of calcium (Ca), phosphate, creatinine (Cr), calcium to creatinine (Ca:Cr) ratio (P< 0.001) and hydroxyproline (HPr) (P< 0.01) than rats in the sham group. Significant recovery of all these parameters were observed in animals receiving BTE. The ovx group also had significantly higher (P< 0.001) serum alkaline phosphatase (AP) and tartrate-resistant acid phosphatase (TRAP) activity than rats in the other two groups. These changes could not be seen in animals receiving BTE. Also, identical changes were seen in bone density experiments. Rats in the ovx group had significantly lower densities of the right femur (P<0.001), eighth thoracic rib (P< 0.001), eighth thoracic vertebra (P< 0.05), and fourth lumbar vertebra (P< 0.01) than rats in the sham group; and significant improvement in densities of these bones were seen in animals supplemented with BTE. Animals of ovx group also showed significant decrease in calcium and phosphate level in all these bones which could be regained significantly when these animals were supplemented with BTE. Our findings suggest that aqueous BTE may be effective in preventing bone loss due to ovarian hormone deficiency. Because serum activity of AP, TRAP and urinary loss of bone minerals (Ca and Phosphate) and also the organic components of bone (Cr and HPr) were significantly greater in the ovx group, compared to sham animals and ovx + BTE group. This confirms that ovariectomy enhances and BTE suppresses the rate of bone turnover. The density results of ovx + BTE group are significantly greater than rats in the ovx group, suggesting further that formation exceeded resorption. Detailed studies are underway to clarify the mechanism of this protective effect of BTE on hypogonadal bone loss.
Das AS, Mukherjee M, Mitra C
Asia Pac J Clin Nutr 2004
PMID: 15228990 | Free Full Text