Monthly Archives: May 2014

Review: Vitamin K Reviewed by European Vitamin K Experts

Abstract

Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health.

Vitamin K is well known for its role in the synthesis of a number of blood coagulation factors. During recent years vitamin K-dependent proteins were discovered to be of vital importance for bone and vascular health. Recommendations for dietary vitamin K intake have been made on the basis of the hepatic requirements for the synthesis of blood coagulation factors. Accumulating evidence suggests that the requirements for other functions than blood coagulation may be higher. This paper is the result of a closed workshop (Paris, November 2002) in which a number of European vitamin K experts reviewed the available data and formulated their standpoint with respect to recommended dietary vitamin K intake and the use of vitamin K-containing supplements.

Vermeer C, Shearer MJ, Zittermann A, Bolton-Smith C…
Eur J Nutr Dec 2004
PMID: 15309455 | Free Full Text


Accumulating evidence suggests that in many aspects arterial calcification mimics bone formation, which prompts interest in the effects of vitamin K on the vasculature. Previous population-based studies reported a significant reduction in aortic calcification with high vitamin K1 [62] and vitamin K2 intake [63], and a significant inverse correlation was found between vitamin K2 intake, and the incidence of both ischaemic heart disease and cardiovascular mortality [63]. Based on these findings the effect of treatment on arterial characteristics was monitored in the Maastricht osteostudy. These unpublished findings clearly demonstrated that supplementation with vitamin K1 can protect against vascular hardening and loss of arterial elasticity. High dose MK-4 also seems to have cholesterol lowering properties as shown in studies in rabbits [64] and humans [65].

[…]

Extremely high doses (45–90mg/day) of MK-4 have been used for the treatment of postmenopausal osteoporosis in Japan for several years [66, 67]. After the positive outcomes of the first clinical trials, the treatment is now used on a large scale; thus far, no adverse side-effects have been reported. A number of independent groups have claimed that this medication results in complete prevention of further bone loss in postmenopausal women, and in some women even a significant gain in BMD [68, 69]. The treatment was also reported to be successful in other groups at risk for bone loss such as haemodialysis patients and those treated with corticosteroids.

[…]

In considering the potential efficacy of pharmacological doses of MK-4 it should be noted that there is evidence for a secondary function of this analogue over and above its role in glutamate carboxylation. The available evidence (mainly from cell culture experiments) suggests that MK-4 (but not K1) may also be associated with production of interleukin-6, regulate the synthesis of PGE2 [83], or inhibit the mevalonate pathway in a comparable way to bisphosphonates [84], but at present only preliminary data exist.

[…]

Any risks associated with relatively high consumption of either K1 or K2 appear minimal, with intakes up to 1 mg/d K1 and 45 mg/d MK-4 often having been used without observed adverse events. Two possible exceptions exist. Firstly a potential problem relates to interference with oral anticoagulants. However, a systematic dose-response study among subjects on oral anticoagulant treatment demonstrated that the stability of anticoagulation was not significantly affected by vitamin K supplements at doses below 100 μg/day [14]. Secondly, preliminary studies have suggested that high vitamin K1 supplementation (i. e. above 1 mg/day) can contribute to periodontal disease via a bacterial mechanism on gingival tissue (S. Hodges, unpublished data).

 

 

PGE2 Stimulates Bone Resorption and Formation In Vitro

Abstract

PGE2 stimulates both resorption and formation of bone in vitro: differential responses of the periosteum and the endosteum in fetal rat long bone cultures.

The ability of PGE2 to stimulate bone resorption in vitro and in vivo is well established but the effects of this compound on bone formation are still controversial. Recent clinical reports have suggested that long-term infusion of PGE in infants with cyanotic heart diseases led to a stimulation of periosteal bone formation and to hyperostosis. In the present report, we describe the effects of PGE2 (10(-5) M) in bone organ cultures on bone resorption, measured by the release of 45Calcium and the number of osteoclasts in sections of cultured bones, and bone volume, by measuring separately medullary and cortical areas. PGE2 induced a marked increase in 45Ca release and in cortical and medullary osteoclast numbers over 4 days in vitro; despite this increase in bone resorption, cortical bone volume remained constant, indicating a parallel increase in bone resorption and formation at this site. Morphological and quantitative data demonstrated a higher extent of osteoblastic surface along the periosteum of PGE2-treated bones when compared with control cultures. Medullary bone volume, on the other hand, decreased sharply during the culture period, demonstrating a lack of parallel increase in bone formation at this site. It is concluded that, under these experimental conditions, prostaglandin E2 stimulated both resorption and formation along the periosteum and only bone resorption along the endosteum of the cultured bones. The overall effect of PGE2 on bone as a whole, however, was net bone loss.

Nefussi JR, Baron R
Anat. Rec. Jan 1985
PMID: 3985383

Phloretin Inhibits Osteoclasts In Vitro

Abstract

Novel antiosteoclastogenic activity of phloretin antagonizing RANKL-induced osteoclast differentiation of murine macrophages.

Bone-remodeling imbalance resulting in more bone resorption than bone formation is known to cause skeletal diseases such as osteoporosis. Phloretin, a natural dihydrochalcone compound largely present in apple peels, possesses antiphotoaging, and antiinflammatory activity.
Phloretin inhibited receptor activator of NF-κB ligand (RANKL)-induced formation of multinucleated osteoclasts and diminished bone resorption area produced during the osteoclast differentiation process. It was also found that ≥ 10 μM phloretin reduced RANKL-enhanced tartrate-resistance acid phosphatase activity and matrix metalloproteinase-9 secretion in a dose-dependent manner. The phloretin treatment retarded RANKL-induced expression of carbonic anhydrase II, vacuolar-type H(+) -ATPase D2 and β3 integrin, all involved in the bone resorption. Furthermore, submicromolar phloretin diminished the expression and secretion of cathepsin K elevated by RANKL, being concurrent with inhibition of TRAF6 induction and NF-κB activation. RANKL-induced activation of nuclear factor of activated T cells c1 (NFATc1) and microphthalmia-associated transcription factor was also suppressed by phloretin.
These results demonstrate that the inhibition of osteoclast differentiation and bone resorption by phloretin entail a disturbance of TRAF6-NFATc1-NF-κB pathway triggered by RANKL. Therefore, phloretin may be a potential therapeutic agent targeting osteoclast differentiation and bone resorption in skeletal diseases such as osteoporosis.

Kim JL, Kang MK, Gong JH, Park SH…
Mol Nutr Food Res Aug 2012
PMID: 22700286

Glabridin Inhibits Osteoclasts In Vitro

Abstract

The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells.

Osteoblastic bone formation and osteoclastic bone resorption are in balance to maintain a constant, homeostatically controlled amount of bone. Excessive bone resorption by osteoclasts is involved in the pathogenesis of bone-related disorders. In the present study, we evaluated the inhibitory effects of glabridin, a flavonoid purified from licorice root, on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and its molecular mechanisms in murine osteoclast progenitor RAW264.7 cells. Glabridin significantly inhibited RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, the formation of multinucleated osteoclasts and resorption-pit formation. In mechanistic studies of the anti-osteoclastogenic potential of glabridin, we found that glabridin inhibited RANKL-induced expression of c-Fos and subsequent expression of NFATc1, which is a master regulator of osteoclastogenesis. Interestingly, glabridin inhibited the RANKL-induced expression of signaling molecules (TRAF6, GAB2, ERK2, JNK1 and MKK7) and osteoclast survival-related signaling pathways such as c-Src, PI3K and Akt2. Glabridin also inhibited the bone resorptive activity of mature osteoclasts by inhibiting osteoclast-associated genes (cathepsin K, MMP-9, CAII, TCIRG1, OSTM1 and CLCN7). Taken together, our data suggest that glabridin holds great promise for use in preventing osteoclastogenesis by inhibiting RANKL-induced activation of signaling molecules and subsequent transcription factors in osteoclast precursors and these findings may be useful for evaluating treatment options in bone-destructive diseases.

Kim HS, Suh KS, Sul D, Kim BJ…
Int. J. Mol. Med. Feb 2012
PMID: 22038020

Inhibition of osteoclast differentiation and bone resorption by sauchinone.

Abstract

Inhibition of osteoclast differentiation and bone resorption by sauchinone.

Osteoclasts are bone-specific multinucleated cells generated by differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach to the treatment of bone-lytic diseases. In this study, we investigated effects of sauchinone, a lignan from Saururus chinensis, on osteoclastogenesis induced by the differentiation factor RANKL (receptor activator of nuclear factor kappa B ligand). Sauchinone strongly inhibited the osteoclastogenesis from primary bone marrow-derived macrophages (BMMs). This effect was accompanied by a significant decrease in the level of carbonic anhydrase II, calcitonin receptor, MMP9, and TRAP, which are normally upregulated during osteoclast differentiation. For the induction of osteoclastogenesis-associated genes, RANKL activates multiple transcription factors through mechanisms involving mitogen-activated protein kinases (MAPK) and reactive oxygen species (ROS). Sauchinone greatly attenuated the activation of ERK and, less prominently, that of p38 MAPKs by RANKL. The RANKL-stimulated induction of c-Fos and NFATc1 transcription factors was also abrogated by sauchinone. In addition, the activation of AP-1, NFAT, and NF-kappaB transcription factors was alleviated in sauchinone-treated cells. Sauchinone also diminished the RANKL-stimulated increase of ROS production in BMMs. Consistent with the in vitro anti-osteoclastogenic effect, sauchinone inhibited bone destruction and osteoclast formation caused by lipopolysaccharide in an animal model. Taken together, our data demonstrate that sauchinone inhibits RANKL-induced osteoclastogenesis by reducing ROS generation, which attenuates MAPK and NF-kappaB activation, ultimately leading to the suppression of c-Fos and NFATc1 induction. Also the in vivo effect of sauchinone on bone erosion strengthens the potential usefulness of this compound for diseases involving bone resorption.

Han KY, Yang D, Chang EJ, Lee Y…
Biochem. Pharmacol. Sep 2007
PMID: 17662251

Saurolactam Inhibits Osteoclasts In Vitro

Abstract

Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts.

The receptor activator of nuclear factor-kappaB ligand (RANKL) plays a critical role in the differentiation and bone resorptive activity of osteoclasts. Recently, the development of anti-resorptive agents from natural substances has become a subject of interest. Therefore, we evaluated the effects of 222 natural compounds on the RANKL-induced tartrate-resistance acid phosphatase (TRAP; a marker for osteoclast differentiation) activity and multinucleated osteoclast formation in RAW264.7 murine macrophage cells. We found that saurolactam was one of the compounds inhibiting the RANKL-induced osteoclastogenesis; it significantly inhibited the RANKL-induced TRAP activity and formation of multinucleated osteoclasts without any cytotoxicity. Interestingly, saurolactam prevented RANKL-induced activation of MAP kinases and NF-kappaB, and mRNA expression of osteoclast-related genes and transcription factors (c-Fos, Fra-2, and NFATc1). We also observed the inhibitory effect of saurolactam on the differentiation of mouse bone marrow-derived macrophages into osteoclasts. Furthermore, saurolactam inhibited the bone resorptive activity of mature osteoclasts with the induction of apoptotic signaling cascade and the inhibition of survival signaling pathways such as c-Src/PI3K/Akt, Ras/ERK, and JNK/c-Jun. In conclusion, although further studies are needed to determine the precise mechanism and biological efficacy of saurolactam in osteoclast-mediated bone disorders, our results demonstrate that saurolactam potentially inhibits osteoclast differentiation by preventing the activation of MAP kinases and transcription factors that consequently affect the regulation of genes required for osteoclastogenesis, and the bone resorptive activity of mature osteoclasts by inhibiting osteoclast survival-related signaling pathways and triggering the apoptotic signaling cascade.

Kim MH, Ryu SY, Choi JS, Min YK…
J. Cell. Physiol. Dec 2009
PMID: 19653230

CoQ10 Inhibits Osteoclasts and Enhances Osteoblasts In Vitro

Abstract

Coenzyme q10 regulates osteoclast and osteoblast differentiation.

Coenzyme Q10 (CoQ10), a powerful antioxidant, is a key component in mitochondrial bioenergy transfer, generating energy in the form of ATP. Many studies suggest that antioxidants act as inhibitors of osteoclastogenesis and we also have previously demonstrated the inhibitory effect of CoQ10 on osteoclast differentiation. Despite the significance of this effect, the molecular mechanism when CoQ10 is present at high concentrations in bone remodeling still remains to be elucidated. In this study, we investigated the inhibitory effect of CoQ10 on osteoclastogenesis and its impact on osteoblastogenesis at concentrations ranging from 10 to 100 μM. We found that nontoxic CoQ10 markedly attenuated the formation of receptor activator of nuclear factor κB ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in both bone-marrow-derived monocytes (BMMs) and RAW 264.7 cells. Osteoclastogenesis with CoQ10 was significantly suppressed the gene expression of NFATc1, TRAP, and osteoclast-associated immunoglobulin-like receptor, which are genetic markers of osteoclast differentiation and scavenged intracellular reactive oxygen species, an osteoclast precursor, in a dose-dependent manner. Furthermore, CoQ10 strongly suppressed H2 O2 -induced IκBα, p38 signaling pathways for osteoclastogenesis. In bone formation study, CoQ10 acted to enhance the induction of osteoblastogenic biomarkers including alkaline phosphatase, type 1 collagen, bone sialoprotein, osteoblast-specific transcription factor Osterix, and Runt-related transcription factor 2 and, also promoted matrix mineralization by enhancing bone nodule formation in a dose-dependent manner. Together, CoQ10 acts as an inhibitor of RANKL-induced osteoclast differentiation and an enhancer of bone-forming osteoblast differentiation. These findings highlight the potential therapeutic applications of CoQ10 for the treatment of bone disease.

Moon HJ, Ko WK, Jung MS, Kim JH…
J. Food Sci. May 2013
PMID: 23582186

CoQ10, Selenite, and Curcumin, Inhibit Bone Resorption via Antioxidation

Abstract

Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation.

Coenzyme Q10 (CoQ10), selenium, and curcumin are known to be powerful antioxidants. Osteoclasts are capable of resorbing mineralized bone and excessive bone resorption by osteoclasts causes bone loss-related diseases. During osteoclast differentiation, the reactive oxygen species (ROS) acts as a secondary messenger on signal pathways. In this study, we investigated whether antioxidants can inhibit RANKL-induced osteoclastogenesis through suppression of ROS generation and compared the relative inhibitory activities of CoQ10, sodium selenite, and curcumin on osteoclast differentiation. We found that antioxidants markedly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in both bone marrow-derived monocytes (BMMs) and RAW 264.7 cells. Antioxidants scavenged intracellular ROS generation within osteoclast precursors during RANKL-stimulated osteoclastogenesis. These also acted to significantly suppress the gene expression of NFATc1, TRAP, and osteoclast-associated immunoglobulin-like receptor (OSCAR), which are genetic markers of osteoclast differentiation in a dose-dependent manner. These antioxidants also suppressed ROS-induced IκBα signaling pathways for osteoclastogenesis. Specially, curcumin displayed the highest inhibitory effect on osteoclast differentiation when concentrations were held constant. Together, CoQ10, selenite, and curcumin act as inhibitors of RANKL-induced NFATc1 which is a downstream event of NF-κB signal pathway through suppression of ROS generation, thereby suggesting their potential usefulness for the treatment of bone disease associated with excessive bone resorption.

Moon HJ, Ko WK, Han SW, Kim DS…
Biochem. Biophys. Res. Commun. Feb 2012
PMID: 22252298

Glucosamine Reduces Anabolic and Catabolic Processes in Chondrocytes In Vitro

Abstract

Glucosamine reduces anabolic as well as catabolic processes in bovine chondrocytes cultured in alginate.

To investigate the working mechanism of glucosamine (GlcN) by studying the effect of different GlcN derivatives on bovine chondrocytes in alginate beads under anabolic and catabolic culture conditions.
Bovine chondrocytes seeded in alginate beads were treated with different concentrations of glucosamine-sulfate (GlcN-S), glucosamine-hydrochloride (GlcN-HCl) or N-acetyl-glucosamine (GlcN-Ac). Culture conditions were anabolic, 3 day pre-culture followed by 14 days’ treatment; catabolic, extracellular matrix (ECM) breakdown induced by 10ng/ml interleukin-1beta (IL-1beta); or a situation with balance between ECM breakdown and synthesis, 24 days’ pre-culture followed by 14 days’ treatment. The outcome measurements were total glycosaminoglycan (GAG) and DNA content per bead.
In the situation with balance between ECM breakdown and synthesis, GlcN-Ac had a small stimulatory effect on total GAG content. GlcN-S and GlcN-HCl had no effect. Under anabolic condition 5mM GlcN-S and GlcN-HCl significantly reduced total GAG content. GlcN-Ac did not show this effect. IL-1beta induced catabolic effects were prevented by adding 5mM GlcN-HCl. Interference of GlcN with glucose (Gluc) was demonstrated by adding extra Gluc to the medium in the anabolic culture conditions. Increasing extracellular Gluc concentrations diminished the effect of GlcN.
GlcN-S and GlcN-HCl, but not GlcN-Ac, reduce anabolic and catabolic processes. For anabolic processes this was demonstrated by decreased ECM synthesis, for catabolic processes by protection against IL-1beta mediated ECM breakdown. This might be due to interference of GlcN with Gluc utilization. We suggest that the claimed structure modifying effects of GlcN are more likely based on protection against ECM degradation than new ECM production.

Uitterlinden EJ, Jahr H, Koevoet JL, Bierma-Zeinstra SM…
Osteoarthr. Cartil. Nov 2007
PMID: 17543549

Glucosamine Detrimental to Intervertebral Disc In Vitro

Abstract

The effects of glucosamine sulfate on intervertebral disc annulus fibrosus cells in vitro.

Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection.
The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading.
Controlled in vitro laboratory setting.
Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1β and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM, and the authors have no conflicts of interest.
Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose-dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, matrix metalloproteinase-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested.
These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation but not under conditions where mechanical loading is present or in which matrix synthesis is needed.

Sowa GA, Coelho JP, Jacobs LJ, Komperda K…
Spine J Dec 2013
PMID: 24361347