Monthly Archives: June 2013

Running Improves Calcium Balance in Rats

Abstract

Hypokinesia-induced negative net calcium balance reversed by weight-bearing exercise.

Negative calcium balance and bone loss occurring with immobilization and hypokinesia have been attributed to a lack of weight bearing on bones. The effects of weight-bearing exercise for promotion of calcium balance after hypokinesia were examined. Rats were randomly assigned to either hypokinetic suspension for 28 d or to a control sedentary group, free to move about their cages at will. After 28 d, the rats in each group were randomly subdivided to either post-hypokinetic forced running (HR), post-hypokinetic sedentary (HS), control forced running (CR), or control sedentary (CS) groups. Net calcium balance was then determined for 25 consecutive days. Net calcium balance of HR was negative for the first 5-d period of recovery and then became positive; that of HS was negative for 25 d; that of CR and CS remained essentially positive. Net calcium absorption paralleled net calcium balance. Forced running was effective in reestablishment of positive net calcium balance after 28 d of decreased weight bearing.

Lutz J, Chen F, Kasper CE
Aviat Space Environ Med Apr 1987
PMID: 3579816

Exercise + HRT = Bone Synergy

Abstract

Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women.

The separate and combined effects of weight-bearing exercise and hormone replacement therapy (HRT) on bone mineral density (BMD) were studied in 32 women, 60 to 72 years of age. HRT consisted of continuous conjugated estrogens 0.625 mg/day and trimonthly medroxyprogesterone acetate 5 mg/day for 13 days. Exercise consisted of 2 months of low-intensity exercise followed by 9 months of more vigorous weight-bearing exercise approximately 45 minutes/day, > or = 3 days/week, at 65-85% of maximal heart rate. Lumbar spine and proximal femur BMD were significantly increased in response to exercise and to HRT, and total body BMD was significantly increased in response to HRT; neither exercise nor HRT had an effect on wrist BMD. The combination of exercise + HRT resulted in increased BMD at all sites except the wrist, with effects being additive for the lumbar spine and Ward’s triangle and synergistic for the total body. Based on reductions in serum osteocalcin levels, it appears that increases in BMD in response to HRT and exercise + HRT were due to decreased bone turnover. The lack of change in serum osteocalcin and IGF-I in response to exercise alone suggests that increases in BMD were due to decreased bone resorption and not increased formation. Results indicate that weight-bearing exercise + HRT may be effective in preventing and/or treating osteoporosis. It is likely that the additive effects of weight-bearing exercise and HRT on bone mineral accretion, coupled with other adaptations to the exercise (i.e., increased strength and functional capacity), could effectively reduce the incidence of falls and osteoporotic fractures.

Kohrt WM, Snead DB, Slatopolsky E, Birge SJ
J. Bone Miner. Res. Sep 1995
PMID: 7502701

Chocolate Bad for Bones

Abstract

Chocolate consumption and bone density in older women.

Nutrition is important for the development and maintenance of bone structure and for the prevention of osteoporosis and fracture. The relation of chocolate intake with bone has yet to be investigated.
We investigated the relation of chocolate consumption with measurements of whole-body and regional bone density and strength.
Randomly selected women aged 70-85 y (n=1460) were recruited from the general population to a randomized controlled trial of calcium supplementation and fracture risk. We present here a cross-sectional analysis of 1001 of these women. Bone density and strength were measured with the use of dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and quantitative ultrasonography. Frequency of chocolate intake was assessed with the use of a questionnaire and condensed into 3 categories: or=1 time/d.
Higher frequency of chocolate consumption was linearly related to lower bone density and strength (P<0.05). Daily (>or=1 times/d) consumption of chocolate, in comparison to Older women who consume chocolate daily had lower bone density and strength. Additional cross-sectional and longitudinal studies are needed to confirm these observations. Confirmation of these findings could have important implications for prevention of osteoporotic fracture.

Hodgson JM, Devine A, Burke V, Dick IM…
Am. J. Clin. Nutr. Jan 2008
PMID: 18175753 | Free Full Text


This is disappointing. Cocoa is normally so healthy. My first thought was that they may be seeing the effects of sugar. Reading the full study, which is available for free using the link above, the authors made these comments:

Chocolate is usually also rich in sugar and contains the methylxanthines, theobromine and caffeine (27), and oxalate (11, 12)….

Oxalate is a potent inhibitor of calcium absorption (13). Furthermore, a single 100-g dose of dark chocolate was found to increase calcium excretion by 147% (14). The basis for this is not clear, but it is likely to include an effect of sugar to increase urinary calcium excretion (14, 15), dependent in part on an increase in plasma insulin that itself stimulates calciuria (29).

I wonder what would happen if you consumed a very dark chocolate (so very low in sugar) and supplemented calcium and vitamin D? The idea being that the very dark chocolate would avoid most of the sugar, and the calcium and vitamin D would hopefully overcome the reduced calcium absorption.

Olive Oil, but Not Nuts, May Protect Bones

Abstract

A Mediterranean diet enriched with olive oil is associated with higher serum total osteocalcin levels in elderly men at high cardiovascular risk.

The intake of olive oil has been related to the prevention of osteoporosis in experimental and in in vitro models. Very few prospective studies have evaluated the effects of olive oil intake on circulating osteocalcin (OC) in humans.
The objective of the study was to examine the longitudinal effects of a low-fat control diet (n=34), a Mediterranean diet enriched with nuts (MedDiet+nuts, n=51), or a Mediterranean diet enriched with virgin olive oil (MedDiet+VOO, n=42) on circulating forms of OC and bone formation markers in elderly men at high cardiovascular risk.
Longitudinal associations between baseline and follow-up (2 yr) measurements of total OC, undercarboxylated osteocalcin, C-telopeptide of type I collagen, and procollagen I N-terminal propeptide (P1NP) concentrations were examined in 127 elderly men randomized to three healthy dietary interventions.
Baseline characteristics (age, body mass index, waist circumference, lipid profile, fasting insulin levels, and bone formation and resorption markers) were similar in all intervention groups. The total osteocalcin concentration increased robustly in the MedDiet+VOO group (P=0.007) in parallel to increased P1NP levels (P=0.01) and homeostasis model assessment-β-cell function (P=0.01) but not in subjects on the MedDiet+nuts (P=0.32) or after the control diet (P=0.74). Interestingly, the consumption of olives was associated positively with both baseline total osteocalcin (r=0.23, P=0.02) and the 2-yr osteocalcin concentrations (r=0.21, P=0.04) in the total cohort.
Consumption of a Mediterranean diet enriched with virgin olive oil for 2 years is associated with increased serum osteocalcin and P1NP concentrations, suggesting protective effects on bone.

Fernández-Real JM, Bulló M, Moreno-Navarrete JM, Ricart W…
J. Clin. Endocrinol. Metab. Oct 2012
PMID: 22855341


Interestingly, nuts did not show a benefit.

Oleuropein (from Olives) Increases Osteoblasts In Vitro

Abstract

Oleuropein enhances osteoblastogenesis and inhibits adipogenesis: the effect on differentiation in stem cells derived from bone marrow.

The effects of oleuropein on the processes of osteoblastogenesis and adipogenesis in mesenchymal stem cells (MSCs) from human bone marrow have been studied. We report that oleuropein, a polyphenol abundant in olive tree products, reduces the expression of peroxisome proliferator-activated receptor gamma (PPARγ), inhibits adipocyte differentiation, and enhances differentiation into osteoblast.
Age-related bone loss is associated with osteoblast insufficiency during continuous bone remodeling. It has been suggested that the formation of osteoblasts in bone marrow is closely associated with adipogenesis, and age-related changes in this relationship could be responsible for the progressive adiposity of bone marrow which occurs with osteoporosis. In addition, the consumption of oleuropein, a major polyphenol in olive leaves and olive oil, has been associated with a reduction in bone loss.
We have analyzed the effects of oleuropein-at concentrations between 10(-6) and 10(-4) M-on the processes of osteoblastogenesis and adipogenesis in MSCs from human bone marrow.
The results show an increase in osteoblast differentiation and a decrease in adipocyte differentiation when there is oleuropein in the culture media. The gene expression of osteoblastogenesis markers, RUNXII, osterix, collagen type I, osteocalcin, or alkaline phosphatase (ALP), was higher in osteoblast-induced oleuropein-treated cells. Also, the ALP activity and extracellular matrix mineralization were higher when oleuropein was present in the media. Oleuropein in MSCs induced adipocytes to produce a decrease in the expression of the genes involved in adipogenesis, the PPARγ, lipoprotein lipase, or fatty acid-binding protein 4, and minor fat accumulation.
Our data suggest that oleuropein, highly abundant in olive tree products included in the traditional Mediterranean diet, could prevent age-related bone loss and osteoporosis.

Santiago-Mora R, Casado-Díaz A, De Castro MD, Quesada-Gómez JM
Osteoporos Int Feb 2011
PMID: 20495905

Olive Oil Mitigates Osteoporosis in Rats

Abstract

Olive oil effectively mitigates ovariectomy-induced osteoporosis in rats.

Osteoporosis, a reduction in bone mineral density, represents the most common metabolic bone disease. Postmenopausal women are particularly susceptible to osteoporosis when their production of estrogen declines. For these women, fracture is a leading cause of morbidity and mortality. This study was conducted to evaluate the protective effects of olive oil supplementation against osteoporosis in ovariectomized (OVX) rats.
We studied adult female Wistar rats aged 12-14 months, divided into three groups: sham-operated control (SHAM), ovariectomized (OVX), and ovariectomized rats supplemented with extravirgin olive oil (Olive-OVX) orally for 12 weeks; 4 weeks before ovariectomy and 8 weeks after. At the end of the experiment, blood samples were collected. Plasma levels of calcium, phosphorus, alkaline phosphatase (ALP), malondialdehyde (MDA), and nitrates were assayed. Specimens from both the tibia and the liver were processed for light microscopic examination. Histomorphometric analysis of the tibia was also performed.
The OVX-rats showed a significant decrease in plasma calcium levels, and a significant increase in plasma ALP, MDA, and nitrates levels. These changes were attenuated by olive oil supplementation in the Olive-OVX rats. Light microscopic examination of the tibia of the OVX rats revealed a significant decrease in the cortical bone thickness (CBT) and the trabecular bone thickness (TBT). In addition, there was a significant increase in the osteoclast number denoting bone resorption. In the Olive-OVX rats these parameters were markedly improved as compared to the OVX group. Examination of the liver specimens revealed mononuclear cellular infiltration in the portal areas in the OVX-rats which was not detected in the Olive-OVX rats.
Olive oil effectively mitigated ovariectomy-induced osteoporosis in rats, and is a promising candidate for the treatment of postmenopausal osteoporosis.

Saleh NK, Saleh HA
BMC Complement Altern Med 2011
PMID: 21294895 | Free Full Text

Fish, Olive Oil, and Low Red Meat Preserve Bone in Greek Women

Abstract

Association between dietary patterns and indices of bone mass in a sample of Mediterranean women.

A holistic dietary approach, examining the effect of dietary patterns in terms of chronic disease prevention and treatment, continuously gains more attention and may elucidate the association between diet and bone health. In the present study we examined whether adherence to a Mediterranean diet or other dietary patterns has any significant impact on indices of bone mass.
Two hundred twenty adult Greek women were recruited. Lumbar spine bone mineral density and total body bone mineral content were determined by using dual x-ray absorptiometry. Food intake was assessed using 3-d food records and adherence to the Mediterranean diet was evaluated through a Mediterranean diet score. Principal components analysis was used for the identification of participants’ dietary patterns.
Adherence to a Mediterranean diet was not found to have any significant effect on indices of bone mass. Principal components analysis identified 10 dietary patterns explaining 80% of the variance in food intake. A pattern characterized by high consumption of fish and olive oil and low intake of red meat was positively associated with lumbar spine bone mineral density (P = 0.017) and total body bone mineral content (P = 0.048), after controlling for several confounders.
Adherence to a Mediterranean dietary pattern was not associated with indices of bone mass in a sample of adult women, whereas adherence to a dietary pattern close to the Mediterranean diet, i.e., high consumption of fish and olive oil and low red meat intake, was positively related to bone mass, suggesting potential bone-preserving properties of this pattern throughout adult life.

Kontogianni MD, Melistas L, Yannakoulia M, Malagaris I…
Nutrition Feb 2009
PMID: 18849146

Tyrosol and Hydroxytyrosol (from Olive Oil) Prevent Osteopenia in Rats

Abstract

Major phenolic compounds in olive oil modulate bone loss in an ovariectomy/inflammation experimental model.

This study was conducted to determine whether the daily consumption for 84 days of tyrosol and hydroxytyrosol, the main olive oil phenolic compounds, and olive oil mill wastewater (OMWW), a byproduct of olive oil production, rich in micronutrients, may improve bone loss in ovariectomized rats (an experimental model of postmenopausal osteoporosis) and in ovariectomized rats with granulomatosis inflammation (a model set up for senile osteoporosis). As expected, an induced chronic inflammation provoked further bone loss at total, metaphyseal, and diaphyseal sites in ovariectomized rats. Tyrosol and hydroxytyrosol prevented this osteopenia by increasing bone formation ( p < 0.05), probably because of their antioxidant properties. The two doses of OMWW extracts had the same protective effect on bone ( p < 0.05), whereas OMWW did not reverse established osteopenia. In conclusion, polyphenol consumption seems to be an interesting way to prevent bone loss.

Puel C, Mardon J, Agalias A, Davicco MJ…
J. Agric. Food Chem. Oct 2008
PMID: 18800805

Black Olives (not Green) Prevent Bone Loss in Rats

Abstract

Black Lucques olives prevented bone loss caused by ovariectomy and talc granulomatosis in rats.

This study was conducted to determine whether olive fruits, rich in micronutrients, might improve bone loss in ovariectomized (OVX) rats (an experimental model of postmenopausal osteoporosis) and in OVX rats with granulomatosis inflammation (a model of senile osteoporosis). Six-month-old Wistar female rats underwent ovariectomy and were then immediately treated orally by substituting oil in the diet by 10 g/d green Lucques olives or 6 g/d black Lucques olives for each rat for 84 days. OVX rats and sham-operated controls received the same diet with oil. Three weeks before the end of the experiment, subcutaneous inflammation was provoked by injections of sterile magnesium silicate in half the animals in each group. In OVX rats, granulomatosis inflammation, characterized by a rise in inflammatory parameters such as fibrinogen, alpha1-acid glycoprotein, spleen weight and granulocyte level, and an impairment of oxidative status (as shown by a decrease in plasma antioxidant capacity, a higher rate of isoprostane excretion) elicited a bone loss in the whole femur and in the metaphyseal areas considered on their own. Whereas green olives had no effect on osteopenia, consumption of the black variety prevented bone loss in the whole femur and at cortical sites in those oestrogen-deficient animals with talc inflammation (diaphyseal bone mineral density: black olives and inflammation 0-2323 (SE 0.0026) v. ovariectomy and inflammation 0.2117 (SE 0.0030); P=0.027). This bone-sparing effect seemed to result from an improvement in the inflammatory and oxidative status. The present data show that black olives are able to prevent bone loss in an experimental model of senile osteoporosis (oestrogen-deficient rats in which a low-grade inflammation was induced by talc injection).

Puel C, Mardon J, Kati-Coulibaly S, Davicco MJ…
Br. J. Nutr. May 2007
PMID: 17408530

Every Dose of Oleuropein Protective in Rats

Abstract

Dose-response study of effect of oleuropein, an olive oil polyphenol, in an ovariectomy/inflammation experimental model of bone loss in the rat.

This study was carried out to assess the dose-dependent bone-sparing effect of oleuropein, an olive oil phenolic compound with anti-inflammatory and anti-oxidative properties, on bone loss induced by talc granulomatosis in oestrogen-deficient rat.
Among 98 rats, 20 were sham-operated (SH) while the others (78) were ovariectomised (OVX). The SH and 26 OVX rats (controls) were given a standard diet for 100 days. The 52 remaining OVX rats were allocated to 4 groups that received oleuropein at 2.5, 5, 10 or 15 mg/kg body weight per day for 100 days. Three weeks before necropsy, an inflammation was induced by subcutaneous injections of talc in half of the SH and OVX rats and in all oleuropein-treated animals.
Castration was associated with a decreased bone mineral density (BMD). In OVX rats, inflammation, characterised by an increase of the spleen weight and plasma fibrinogen levels, exacerbated this bone loss, as shown by values of BMD of the total femur metaphyseal and diaphyseal subregions. The 4 doses of oleuropein reduced bone loss and improved inflammatory biomarkers excepted for 5mg/kg BW.
Every dose of oleuropein elicited protective effects on bone mass in this model of ovariectomy associated with inflammation, probably by modulating inflammatory parameters.

Puel C, Mathey J, Agalias A, Kati-Coulibaly S…
Clin Nutr Oct 2006
PMID: 16740345