Tag Archives: positive

Calcium-Collagen Chelate Reduces Sclerostin in Women

Abstract

A calcium-collagen chelate dietary supplement attenuates bone loss in postmenopausal women with osteopenia: a randomized controlled trial.

Menopause leads to an increased risk for osteoporosis in women. Although drug therapies exist, increasing numbers of people prefer alternative therapies such as dietary supplements, for example, calcium, vitamin D, and collagen hydrolysates for the prevention and treatment of osteoporosis. We have previously shown that a 3-month intervention using a calcium-collagen chelate (CC) dietary supplement was efficacious in improving bone mineral density (BMD) and blood biomarkers of bone turnover in osteopenic postmenopausal women. This study reports the long-term efficacy of CC in reducing bone loss in postmenopausal women with osteopenia. Thirty-nine women were randomly assigned to one of two groups: 5 g of CC containing 500 mg of elemental calcium and 200 IU vitamin D (1,25-dihydroxyvitamin D3) or control (500 mg of calcium and 200 IU vitamin D) daily for 12 months. Total body, lumbar, and hip BMD were evaluated at baseline, 6 and 12 months using dual-energy X-ray absorptiometry. Blood was collected at baseline, 6 and 12 months to assess levels of blood biomarkers of bone turnover. Intent-to-treat (ITT) analysis was performed using repeated measures analysis of variance pairwise comparisons and multivariate analysis to assess time and group interactions. The loss of whole body BMD in women taking CC was substantially lower than that of the control group at 12 months in those who completed the study and the ITT analysis, respectively (CC: -1.33% and -0.33% vs. control: -3.75% and -2.17%; P=.026, P=.035). The CC group had significantly reduced levels of sclerostin and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) (P<.05), and higher bone-specific alkaline phosphatase/TRAP5b ratio (P<.05) than control at 6 months. These results support the use of CC in reducing bone loss in osteopenic postmenopausal women.

Elam ML, Johnson SA, Hooshmand S, Feresin RG…
J Med Food Mar 2015
PMID: 25314004

SIRT1 Represses Sclerostin in Mice and may be Anabolic for Bone

Abstract

Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor.

Sirt1, the mammalian ortholog of the yeast Sir2 (silent information regulator 2), was shown to play an important role in metabolism and in age-associated diseases, but its role in skeletal homeostasis and osteoporosis has yet not been studied. Using 129/Sv mice with a germline mutation in the Sirt1 gene, we demonstrate that Sirt1 haplo-insufficient (Sirt1(+/-)) female mice exhibit a significant reduction in bone mass characterized by decreased bone formation and increased marrow adipogenesis. Importantly, we identify Sost, encoding for sclerostin, a critical inhibitor of bone formation, as a novel target of Sirt1. Using chromatin immunoprecipitation analysis, we reveal that Sirt1 directly and negatively regulates Sost gene expression by deacetylating histone 3 at lysine 9 at the Sost promoter. Sost down-regulation by small interfering RNA and the administration of a sclerostin-neutralizing antibody restore gene expression of osteocalcin and bone sialoprotein as well as mineralized nodule formation in Sirt1(+/-) marrow-derived mesenchymal stem cells induced to osteogenesis. These findings reveal a novel role for Sirt1 in bone as a regulator of bone mass and a repressor of sclerostin, and have potential implications suggesting that Sirt1 is a target for promoting bone formation as an anabolic approach for treatment of osteoporosis.

Cohen-Kfir E, Artsi H, Levin A, Abramowitz E…
Endocrinology Dec 2011
PMID: 21952235

Resveratrol and SIRT1 Reduces Sclerostin Expression In-Vitro

Abstract

Low sirtuin 1 levels in human osteoarthritis subchondral osteoblasts lead to abnormal sclerostin expression which decreases Wnt/β-catenin activity.

Wnt/β-catenin (cWnt) signaling plays a key role in osteogenesis by promoting the differentiation and mineralization of osteoblasts, activities altered in human osteoarthritic subchondral osteoblast (OA Ob). Sclerostin (SOST) has been shown to alter cWnt signaling. Sirtuin 1 (SIRT1) acts as a novel bone regulator and represses SOST levels in Ob. However the role of SIRT1 and SOST in OA Ob remains unknown. Herein, we explored the role played by SIRT1 and SOST on the abnormal mineralization and cWnt signaling in OA Ob.
Primary human normal and OA Ob were prepared from tibial plateaus. SOST levels were evaluated by immunohistochemistry, the expression and production of genes by qRT-PCR and WB analysis. Their inhibitions were performed using siRNA. cWnt signaling was measured by the TOPflash TCF/lef luciferase reporter assay. Mineralization was determined by alizarin red staining.
SOST levels were significantly increased in OA Ob compared to normal and were linked with elevated TGF-β1 levels in these cells. SIRT1 expression was significantly reduced in OA Ob compared to normal yet not modified by TGF-β1. Specific inhibition of SIRT1 increased TGF-β1 and SOST expressions in OA Ob, while stimulating SIRT1 activity with β-Nicotinamide mononucleotide reduced the expression of TGF-β1 and SOST, and increased mineralization in OA Ob. Resveratrol also reduced SOST expression in OA Ob. Reduced cWnt signaling, β-catenin levels, and mineralization in OA Ob were all corrected via reducing SOST expression.
These data indicate that high level of SOST is responsible, in part, for the reduced cWnt and mineralization of human OA Ob, which in turn is linked with abnormal SIRT1 levels in these pathological cells.

Abed É, Couchourel D, Delalandre A, Duval N…
Bone Feb 2014
PMID: 24184155

Oxytocin is Lower in Osteoporotic Women

Abstract

Oxytocin and bone remodelling: relationships with neuropituitary hormones, bone status and body composition.

There is growing evidence that oxytocin, which regulates appetite, plays a role in bone remodelling and improves osteoporosis. We previously showed a significant decrease in circulating oxytocin levels in postmenopausal osteoporotic women compared to healthy controls. However, factors involved in the pathophysiology of osteoporosis, such as estrogens and leptin, are known to regulate oxytocin secretion. Herein, we evaluated the relationships between oxytocin and other hormonal factors known to regulate bone remodeling and body composition in postmenopausal osteoporotic women, compared to healthy controls.
In 20 postmenopausal women with severe osteoporosis compared to 16 healthy controls, we measured serum levels of oxytocin, high sensitive estradiol, testosterone, FSH, LH, SHBG, TSH, osteocalcin, serum type I collagen carboxy-terminal telopeptide, leptin. Bone mineral density and body composition were also measured with DXA.
Osteoporotic women had significantly lower oxytocin, leptin and LH serum levels and higher CTX and SHBG; all other biological parameters were similar in both groups. Fat mass and lean mass were significantly decreased in osteoporotic women. Oxytocin serum levels were significantly correlated to bone mineral density but not to any other measured parameter, including leptin, estradiol and age. In a logistic regression analysis, osteoporosis remained significantly correlated to oxytocin, regardless of age.
Low oxytocin serum levels appeared to be associated with severe osteoporosis, independently of other factors associated with osteoporosis or known to regulate oxytocin serum levels, such as estradiol or leptin, reinforcing the concept that oxytocin may be involved in the pathophysiology of postmenopausal osteoporosis.

Breuil V, Amri EZ, Panaia-Ferrari P, Testa J…
Joint Bone Spine Dec 2011
PMID: 21441053

Oxytocin Reverses Osteopenia in Ovariectomized Mice

Abstract

Oxytocin reverses ovariectomy-induced osteopenia and body fat gain.

Osteoporosis and overweight/obesity constitute major worldwide public health burdens that are associated with aging. A high proportion of women develop osteoporosis and increased intraabdominal adiposity after menopause. which leads to bone fractures and metabolic disorders. There is no efficient treatment without major side effects for these 2 diseases. We previously showed that the administration of oxytocin (OT) normalizes ovariectomy-induced osteopenia and bone marrow adiposity in mice. Ovariectomized mice, used as an animal model mimicking menopause, were treated with OT or vehicle. Trabecular bone parameters and fat mass were analyzed using micro-computed tomography. Herein, we show that this effect on trabecular bone parameters was mediated through the restoration of osteoblast/osteoclast cross talk via the receptor activator of nuclear factor-κB ligand /osteoprotegerin axis. Moreover, the daily administration of OT normalized body weight and intraabdominal fat depots in ovariectomized mice. Intraabdominal fat mass is more sensitive to OT that sc fat depots, and this inhibitory effect is mediated through inhibition of adipocyte precursor’s differentiation with a tendency to lower adipocyte size. OT treatment did not affect food intake, locomotors activity, or energy expenditure, but it did promote a shift in fuel utilization favoring lipid oxidation. In addition, the decrease in fat mass resulted from the inhibition of the adipose precursor’s differentiation. Thus, OT constitutes an effective strategy for targeting osteopenia, overweight, and fat mass redistribution without any detrimental effects in a mouse model mimicking the menopause.

Beranger GE, Pisani DF, Castel J, Djedaini M…
Endocrinology Apr 2014
PMID: 24506069

Sclerostin Inhibitor Increases Bone Strength More than the Controls in Rats

Abstract

Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis.

The development of bone-rebuilding anabolic agents for potential use in the treatment of bone loss conditions, such as osteoporosis, has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation, although the magnitude and extent of sclerostin’s role in the control of bone formation in the aging skeleton is still unclear. To study this unexplored area of sclerostin biology and to assess the pharmacologic effects of sclerostin inhibition, we used a cell culture model of bone formation to identify a sclerostin neutralizing monoclonal antibody (Scl-AbII) for testing in an aged ovariectomized rat model of postmenopausal osteoporosis. Six-month-old female rats were ovariectomized and left untreated for 1 yr to allow for significant estrogen deficiency-induced bone loss, at which point Scl-AbII was administered for 5 wk. Scl-AbII treatment in these animals had robust anabolic effects, with marked increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. This not only resulted in complete reversal, at several skeletal sites, of the 1 yr of estrogen deficiency-induced bone loss, but also further increased bone mass and bone strength to levels greater than those found in non-ovariectomized control rats. Taken together, these preclinical results establish sclerostin’s role as a pivotal negative regulator of bone formation in the aging skeleton and, furthermore, suggest that antibody-mediated inhibition of sclerostin represents a promising new therapeutic approach for the anabolic treatment of bone-related disorders, such as postmenopausal osteoporosis.

Li X, Ominsky MS, Warmington KS, Morony S…
J. Bone Miner. Res. Apr 2009
PMID: 19049336

Sclerostin Inhibitor Increases Bone Formation, Density, and Strength in Monkeys

Abstract

Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength.

The development of bone-rebuilding anabolic agents for treating bone-related conditions has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation. More recently, administration of sclerostin-neutralizing monoclonal antibodies in rodent studies has shown that pharmacologic inhibition of sclerostin results in increased bone formation, bone mass, and bone strength. To explore the effects of sclerostin inhibition in primates, we administered a humanized sclerostin-neutralizing monoclonal antibody (Scl-AbIV) to gonad-intact female cynomolgus monkeys. Two once-monthly subcutaneous injections of I were administered at three dose levels (3, 10, and 30 mg/kg), with study termination at 2 months. Scl-AbIV treatment had clear anabolic effects, with marked dose-dependent increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. Bone densitometry showed that the increases in bone formation with Scl-AbIV treatment resulted in significant increases in bone mineral content (BMC) and/or bone mineral density (BMD) at several skeletal sites (ie, femoral neck, radial metaphysis, and tibial metaphysis). These increases, expressed as percent changes from baseline were 11 to 29 percentage points higher than those found in the vehicle-treated group. Additionally, significant increases in trabecular thickness and bone strength were found at the lumbar vertebrae in the highest-dose group. Taken together, the marked bone-building effects achieved in this short-term monkey study suggest that sclerostin inhibition represents a promising new therapeutic approach for medical conditions where increases in bone formation might be desirable, such as in fracture healing and osteoporosis.

Ominsky MS, Vlasseros F, Jolette J, Smith SY…
J. Bone Miner. Res. May 2010
PMID: 20200929

Romosozumab Phase I Trial Increased Bone Density

Abstract

Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody.

Sclerostin, an osteocyte-secreted protein, negatively regulates osteoblasts and inhibits bone formation. In this first-in-human study, a sclerostin monoclonal antibody (AMG 785) was administered to healthy men and postmenopausal women. In this phase I, randomized, double-blind, placebo-controlled, ascending, single-dose study, 72 healthy subjects received AMG 785 or placebo (3:1) subcutaneously (0.1, 0.3, 1, 3, 5, or 10 mg/kg) or intravenously (1 or 5 mg/kg). Depending on dose, subjects were followed for up to 85 days. The effects of AMG 785 on safety and tolerability (primary objectives) and pharmacokinetics, bone turnover markers, and bone mineral density (secondary objectives) were evaluated. AMG 785 generally was well tolerated. One treatment-related serious adverse event of nonspecific hepatitis was reported and was resolved. No deaths or study discontinuations occurred. AMG 785 pharmacokinetics were nonlinear with dose. Dose-related increases in the bone-formation markers procollagen type 1 N-propeptide (P1NP), bone-specific alkaline phosphatase (BAP), and osteocalcin were observed, along with a dose-related decrease in the bone-resorption marker serum C-telopeptide (sCTx), resulting in a large anabolic window. In addition, statistically significant increases in bone mineral density of up to 5.3% at the lumbar spine and 2.8% at the total hip compared with placebo were observed on day 85. Six subjects in the higher-dose groups developed anti-AMG 785 antibodies, 2 of which were neutralizing, with no discernible effect on the pharmacokinetics or pharmacodynamics. In summary, single doses of AMG 785 generally were well tolerated, and the data support further clinical investigation of sclerostin inhibition as a potential therapeutic strategy for conditions that could benefit from increased bone formation.

Padhi D, Jang G, Stouch B, Fang L…
J. Bone Miner. Res. Jan 2011
PMID: 20593411

Blosozumab Phase 2 Trial Increased Bone Density

Abstract

A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density.

Sclerostin, a SOST protein secreted by osteocytes, negatively regulates formation of mineralized bone matrix and bone mass. We report the results of a randomized, double-blind, placebo-controlled multicenter phase 2 clinical trial of blosozumab, a humanized monoclonal antibody targeted against sclerostin, in postmenopausal women with low bone mineral density (BMD). Postmenopausal women with a lumbar spine T-score -2.0 to -3.5, inclusive, were randomized to subcutaneous blosozumab 180 mg every 4 weeks (Q4W), 180 mg every 2 weeks (Q2W), 270 mg Q2W, or matching placebo for 1 year, with calcium and vitamin D. Serial measurements of spine and hip BMD and biochemical markers of bone turnover were performed. Overall, 120 women were enrolled in the study (mean age 65.8 years, mean lumbar spine T-score -2.8). Blosozumab treatment resulted in statistically significant dose-related increases in spine, femoral neck, and total hip BMD as compared with placebo. In the highest dose group, BMD increases from baseline reached 17.7% at the spine, and 6.2% at the total hip. Biochemical markers of bone formation increased rapidly during blosozumab treatment, and trended toward pretreatment levels by study end. However, bone specific alkaline phosphatase remained higher than placebo at study end in the highest-dose group. CTx, a biochemical marker of bone resorption, decreased early in blosozumab treatment to a concentration less than that of the placebo group by 2 weeks, and remained reduced throughout blosozumab treatment. Mild injection site reactions were reported more frequently with blosozumab than placebo. In conclusion, treatment of postmenopausal women with an antibody targeted against sclerostin resulted in substantial increases in spine and hip BMD. These results support further study of blosozumab as a potential anabolic therapy for osteoporosis.

Recker RR, Benson CT, Matsumoto T, Bolognese MA…
J. Bone Miner. Res. Feb 2015
PMID: 25196993 | Free Full Text

Blosozumab: Eli Lilly’s New Sclerostin Inhibitor

Blosozumab is a new sclerostin inhibitor developed by Eli Lilly. According to Wikipedia:

Phase II trial of a monoclonal human antibody to sclerostin from Eli Lilly had positive effects on post-menopausal women. Monthly treatments of the antibody for one year increased the bone mineral density of the spine and hip by 18 percent and 6 percent, respectively, compared to the placebo group.