Tag Archives: human

Calcium-Collagen Chelate Reduces Sclerostin in Women

Abstract

A calcium-collagen chelate dietary supplement attenuates bone loss in postmenopausal women with osteopenia: a randomized controlled trial.

Menopause leads to an increased risk for osteoporosis in women. Although drug therapies exist, increasing numbers of people prefer alternative therapies such as dietary supplements, for example, calcium, vitamin D, and collagen hydrolysates for the prevention and treatment of osteoporosis. We have previously shown that a 3-month intervention using a calcium-collagen chelate (CC) dietary supplement was efficacious in improving bone mineral density (BMD) and blood biomarkers of bone turnover in osteopenic postmenopausal women. This study reports the long-term efficacy of CC in reducing bone loss in postmenopausal women with osteopenia. Thirty-nine women were randomly assigned to one of two groups: 5 g of CC containing 500 mg of elemental calcium and 200 IU vitamin D (1,25-dihydroxyvitamin D3) or control (500 mg of calcium and 200 IU vitamin D) daily for 12 months. Total body, lumbar, and hip BMD were evaluated at baseline, 6 and 12 months using dual-energy X-ray absorptiometry. Blood was collected at baseline, 6 and 12 months to assess levels of blood biomarkers of bone turnover. Intent-to-treat (ITT) analysis was performed using repeated measures analysis of variance pairwise comparisons and multivariate analysis to assess time and group interactions. The loss of whole body BMD in women taking CC was substantially lower than that of the control group at 12 months in those who completed the study and the ITT analysis, respectively (CC: -1.33% and -0.33% vs. control: -3.75% and -2.17%; P=.026, P=.035). The CC group had significantly reduced levels of sclerostin and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) (P<.05), and higher bone-specific alkaline phosphatase/TRAP5b ratio (P<.05) than control at 6 months. These results support the use of CC in reducing bone loss in osteopenic postmenopausal women.

Elam ML, Johnson SA, Hooshmand S, Feresin RG…
J Med Food Mar 2015
PMID: 25314004

Resveratrol and SIRT1 Reduces Sclerostin Expression In-Vitro

Abstract

Low sirtuin 1 levels in human osteoarthritis subchondral osteoblasts lead to abnormal sclerostin expression which decreases Wnt/β-catenin activity.

Wnt/β-catenin (cWnt) signaling plays a key role in osteogenesis by promoting the differentiation and mineralization of osteoblasts, activities altered in human osteoarthritic subchondral osteoblast (OA Ob). Sclerostin (SOST) has been shown to alter cWnt signaling. Sirtuin 1 (SIRT1) acts as a novel bone regulator and represses SOST levels in Ob. However the role of SIRT1 and SOST in OA Ob remains unknown. Herein, we explored the role played by SIRT1 and SOST on the abnormal mineralization and cWnt signaling in OA Ob.
Primary human normal and OA Ob were prepared from tibial plateaus. SOST levels were evaluated by immunohistochemistry, the expression and production of genes by qRT-PCR and WB analysis. Their inhibitions were performed using siRNA. cWnt signaling was measured by the TOPflash TCF/lef luciferase reporter assay. Mineralization was determined by alizarin red staining.
SOST levels were significantly increased in OA Ob compared to normal and were linked with elevated TGF-β1 levels in these cells. SIRT1 expression was significantly reduced in OA Ob compared to normal yet not modified by TGF-β1. Specific inhibition of SIRT1 increased TGF-β1 and SOST expressions in OA Ob, while stimulating SIRT1 activity with β-Nicotinamide mononucleotide reduced the expression of TGF-β1 and SOST, and increased mineralization in OA Ob. Resveratrol also reduced SOST expression in OA Ob. Reduced cWnt signaling, β-catenin levels, and mineralization in OA Ob were all corrected via reducing SOST expression.
These data indicate that high level of SOST is responsible, in part, for the reduced cWnt and mineralization of human OA Ob, which in turn is linked with abnormal SIRT1 levels in these pathological cells.

Abed É, Couchourel D, Delalandre A, Duval N…
Bone Feb 2014
PMID: 24184155

Oxytocin Associated with Bone Density in Postmenopausal Women

Abstract

Oxytocin, a new determinant of bone mineral density in post-menopausal women: analysis of the OPUS cohort.

Oxytocin (OT), a neurohypophysial hormone regulated by estrogen and leptin, may play a role in bone metabolism in humans as suggested by animal studies. This study assessed the relationship between OT and bone status in a large population of postmenopausal women.
Subjects were included in the Osteoporosis and Ultrasound study, a 6-year prospective study in a population-based cohort. Final visit data were used for this cross-sectional study. OT, leptin, and estradiol serum levels were measured in 1097 postmenopausal women and compared with bone mineral density (BMD), fractures, and the bone turnover markers (BTMs) procollagen type 1 N-terminal propeptide, bone alkaline phosphatase, and C-telopeptide of type 1 collagen.
The median age was 70.8 years, 16% were osteoporotic, 48% were osteopenic, and 29% had at least one fracture. The OT serum level was related to spine (r = +0.12, P = .0002) and total hip BMD (r = +0.21, P < .0001) and with BTM (procollagen type 1 N-terminal propeptide: r = -0.13, P < .0001, bone alkaline phosphatase: r = -0.07, P = .02, C-telopeptide of type 1 collagen: r = -0.18, P < .0001). The relationship of OT with BMD was independent of BTM. After adjustment for confounding factors, the correlation between OT serum level and BMD remains significant at the hip in women with unmeasurable estradiol or leptin above the median value. There was no significant relationship between OT serum levels and fractures.
High OT levels are associated with high BMD, especially at the hip in women with low estradiol or high leptin serum levels. The mechanism may be explained by the effect of OT on bone turnover.

Breuil V, Panaia-Ferrari P, Fontas E, Roux C…
J. Clin. Endocrinol. Metab. Apr 2014
PMID: 24446658

Oxytocin is Lower in Osteoporotic Women

Abstract

Oxytocin and bone remodelling: relationships with neuropituitary hormones, bone status and body composition.

There is growing evidence that oxytocin, which regulates appetite, plays a role in bone remodelling and improves osteoporosis. We previously showed a significant decrease in circulating oxytocin levels in postmenopausal osteoporotic women compared to healthy controls. However, factors involved in the pathophysiology of osteoporosis, such as estrogens and leptin, are known to regulate oxytocin secretion. Herein, we evaluated the relationships between oxytocin and other hormonal factors known to regulate bone remodeling and body composition in postmenopausal osteoporotic women, compared to healthy controls.
In 20 postmenopausal women with severe osteoporosis compared to 16 healthy controls, we measured serum levels of oxytocin, high sensitive estradiol, testosterone, FSH, LH, SHBG, TSH, osteocalcin, serum type I collagen carboxy-terminal telopeptide, leptin. Bone mineral density and body composition were also measured with DXA.
Osteoporotic women had significantly lower oxytocin, leptin and LH serum levels and higher CTX and SHBG; all other biological parameters were similar in both groups. Fat mass and lean mass were significantly decreased in osteoporotic women. Oxytocin serum levels were significantly correlated to bone mineral density but not to any other measured parameter, including leptin, estradiol and age. In a logistic regression analysis, osteoporosis remained significantly correlated to oxytocin, regardless of age.
Low oxytocin serum levels appeared to be associated with severe osteoporosis, independently of other factors associated with osteoporosis or known to regulate oxytocin serum levels, such as estradiol or leptin, reinforcing the concept that oxytocin may be involved in the pathophysiology of postmenopausal osteoporosis.

Breuil V, Amri EZ, Panaia-Ferrari P, Testa J…
Joint Bone Spine Dec 2011
PMID: 21441053

Oxytocin is Lower in Osteoporosis

Abstract

Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis.

Osteoporosis constitutes a major worldwide public health burden characterized by enhanced skeletal fragility. Bone metabolism is the combination of bone resorption by osteoclasts and bone formation by osteoblasts. Whereas increase in bone resorption is considered as the main contributor of bone loss that may lead to osteoporosis, this loss is accompanied by increased bone marrow adiposity. Osteoblasts and adipocytes share the same precursor cell and an inverse relationship exists between the two lineages. Therefore, identifying signaling pathways that stimulate mesenchymal stem cells osteogenesis at the expense of adipogenesis is of major importance for developing new therapeutic treatments. For this purpose, we identified by transcriptomic analysis the oxytocin receptor pathway as a potential regulator of the osteoblast/adipocyte balance of human multipotent adipose-derived stem (hMADS) cells. Both oxytocin (OT) and carbetocin (a stable OT analogue) negatively modulate adipogenesis while promoting osteogenesis in both hMADS cells and human bone marrow mesenchymal stromal cells. Consistent with these observations, ovariectomized (OVX) mice and rats, which become osteoporotic and exhibit disequilibrium of this balance, have significant decreased OT levels compared to sham-operated controls. Subcutaneous OT injection reverses bone loss in OVX mice and reduces marrow adiposity. Clinically, plasma OT levels are significantly lower in postmenopausal women developing osteoporosis than in their healthy counterparts. Taken together, these results suggest that plasma OT levels represent a novel diagnostic marker for osteoporosis and that OT administration holds promise as a potential therapy for this disease.

Elabd C, Basillais A, Beaupied H, Breuil V…
Stem Cells Sep 2008
PMID: 18583541 | Free Full Text

Oxytocin Reverses Osteoporosis in Female but Not Male Mice

Abstract

Oxytocin reverses osteoporosis in a sex-dependent manner.

The increase of life expectancy has led to the increase of age-related diseases such as osteoporosis. Osteoporosis is characterized by bone weakening promoting the occurrence of fractures with defective bone regeneration. Men aged over 50 have a prevalence for osteoporosis of 20%, which is related to a decline in sex hormones occurring during andropause or surgical orchidectomy. As we previously demonstrated in a mouse model for menopause in women that treatment with the neurohypophyseal peptide hormone oxytocin (OT) normalizes body weight and prevents the development of osteoporosis, herein we addressed the effects of OT in male osteoporosis. Thus, we treated orchidectomized mice, an animal model suitable for the study of male osteoporosis, for 8 weeks with OT and then analyzed trabecular and cortical bone parameters as well as fat mass using micro-computed tomography. Orchidectomized mice displayed severe bone loss, muscle atrophy accompanied by fat mass gain as expected in andropause. Interestingly, OT treatment in male mice normalized fat mass as it did in female mice. However, although OT treatment led to a normalization of bone parameters in ovariectomized mice, this did not happen in orchidectomized mice. Moreover, loss of muscle mass was not reversed in orchidectomized mice upon OT treatment. All of these observations indicate that OT acts on fat physiology in both sexes, but in a sex specific manner with regard to bone physiology.

Beranger GE, Djedaini M, Battaglia S, Roux CH…
Front Endocrinol (Lausanne) 2015
PMID: 26042090 | Free Full Text

Sclerostin Inhibitor Increases Bone Strength More than the Controls in Rats

Abstract

Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis.

The development of bone-rebuilding anabolic agents for potential use in the treatment of bone loss conditions, such as osteoporosis, has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation, although the magnitude and extent of sclerostin’s role in the control of bone formation in the aging skeleton is still unclear. To study this unexplored area of sclerostin biology and to assess the pharmacologic effects of sclerostin inhibition, we used a cell culture model of bone formation to identify a sclerostin neutralizing monoclonal antibody (Scl-AbII) for testing in an aged ovariectomized rat model of postmenopausal osteoporosis. Six-month-old female rats were ovariectomized and left untreated for 1 yr to allow for significant estrogen deficiency-induced bone loss, at which point Scl-AbII was administered for 5 wk. Scl-AbII treatment in these animals had robust anabolic effects, with marked increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. This not only resulted in complete reversal, at several skeletal sites, of the 1 yr of estrogen deficiency-induced bone loss, but also further increased bone mass and bone strength to levels greater than those found in non-ovariectomized control rats. Taken together, these preclinical results establish sclerostin’s role as a pivotal negative regulator of bone formation in the aging skeleton and, furthermore, suggest that antibody-mediated inhibition of sclerostin represents a promising new therapeutic approach for the anabolic treatment of bone-related disorders, such as postmenopausal osteoporosis.

Li X, Ominsky MS, Warmington KS, Morony S…
J. Bone Miner. Res. Apr 2009
PMID: 19049336

Sclerostin Inhibitor Increases Bone Formation, Density, and Strength in Monkeys

Abstract

Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength.

The development of bone-rebuilding anabolic agents for treating bone-related conditions has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation. More recently, administration of sclerostin-neutralizing monoclonal antibodies in rodent studies has shown that pharmacologic inhibition of sclerostin results in increased bone formation, bone mass, and bone strength. To explore the effects of sclerostin inhibition in primates, we administered a humanized sclerostin-neutralizing monoclonal antibody (Scl-AbIV) to gonad-intact female cynomolgus monkeys. Two once-monthly subcutaneous injections of I were administered at three dose levels (3, 10, and 30 mg/kg), with study termination at 2 months. Scl-AbIV treatment had clear anabolic effects, with marked dose-dependent increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. Bone densitometry showed that the increases in bone formation with Scl-AbIV treatment resulted in significant increases in bone mineral content (BMC) and/or bone mineral density (BMD) at several skeletal sites (ie, femoral neck, radial metaphysis, and tibial metaphysis). These increases, expressed as percent changes from baseline were 11 to 29 percentage points higher than those found in the vehicle-treated group. Additionally, significant increases in trabecular thickness and bone strength were found at the lumbar vertebrae in the highest-dose group. Taken together, the marked bone-building effects achieved in this short-term monkey study suggest that sclerostin inhibition represents a promising new therapeutic approach for medical conditions where increases in bone formation might be desirable, such as in fracture healing and osteoporosis.

Ominsky MS, Vlasseros F, Jolette J, Smith SY…
J. Bone Miner. Res. May 2010
PMID: 20200929

Romosozumab Phase I Trial Increased Bone Density

Abstract

Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody.

Sclerostin, an osteocyte-secreted protein, negatively regulates osteoblasts and inhibits bone formation. In this first-in-human study, a sclerostin monoclonal antibody (AMG 785) was administered to healthy men and postmenopausal women. In this phase I, randomized, double-blind, placebo-controlled, ascending, single-dose study, 72 healthy subjects received AMG 785 or placebo (3:1) subcutaneously (0.1, 0.3, 1, 3, 5, or 10 mg/kg) or intravenously (1 or 5 mg/kg). Depending on dose, subjects were followed for up to 85 days. The effects of AMG 785 on safety and tolerability (primary objectives) and pharmacokinetics, bone turnover markers, and bone mineral density (secondary objectives) were evaluated. AMG 785 generally was well tolerated. One treatment-related serious adverse event of nonspecific hepatitis was reported and was resolved. No deaths or study discontinuations occurred. AMG 785 pharmacokinetics were nonlinear with dose. Dose-related increases in the bone-formation markers procollagen type 1 N-propeptide (P1NP), bone-specific alkaline phosphatase (BAP), and osteocalcin were observed, along with a dose-related decrease in the bone-resorption marker serum C-telopeptide (sCTx), resulting in a large anabolic window. In addition, statistically significant increases in bone mineral density of up to 5.3% at the lumbar spine and 2.8% at the total hip compared with placebo were observed on day 85. Six subjects in the higher-dose groups developed anti-AMG 785 antibodies, 2 of which were neutralizing, with no discernible effect on the pharmacokinetics or pharmacodynamics. In summary, single doses of AMG 785 generally were well tolerated, and the data support further clinical investigation of sclerostin inhibition as a potential therapeutic strategy for conditions that could benefit from increased bone formation.

Padhi D, Jang G, Stouch B, Fang L…
J. Bone Miner. Res. Jan 2011
PMID: 20593411

Blosozumab Phase 2 Trial Increased Bone Density

Abstract

A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density.

Sclerostin, a SOST protein secreted by osteocytes, negatively regulates formation of mineralized bone matrix and bone mass. We report the results of a randomized, double-blind, placebo-controlled multicenter phase 2 clinical trial of blosozumab, a humanized monoclonal antibody targeted against sclerostin, in postmenopausal women with low bone mineral density (BMD). Postmenopausal women with a lumbar spine T-score -2.0 to -3.5, inclusive, were randomized to subcutaneous blosozumab 180 mg every 4 weeks (Q4W), 180 mg every 2 weeks (Q2W), 270 mg Q2W, or matching placebo for 1 year, with calcium and vitamin D. Serial measurements of spine and hip BMD and biochemical markers of bone turnover were performed. Overall, 120 women were enrolled in the study (mean age 65.8 years, mean lumbar spine T-score -2.8). Blosozumab treatment resulted in statistically significant dose-related increases in spine, femoral neck, and total hip BMD as compared with placebo. In the highest dose group, BMD increases from baseline reached 17.7% at the spine, and 6.2% at the total hip. Biochemical markers of bone formation increased rapidly during blosozumab treatment, and trended toward pretreatment levels by study end. However, bone specific alkaline phosphatase remained higher than placebo at study end in the highest-dose group. CTx, a biochemical marker of bone resorption, decreased early in blosozumab treatment to a concentration less than that of the placebo group by 2 weeks, and remained reduced throughout blosozumab treatment. Mild injection site reactions were reported more frequently with blosozumab than placebo. In conclusion, treatment of postmenopausal women with an antibody targeted against sclerostin resulted in substantial increases in spine and hip BMD. These results support further study of blosozumab as a potential anabolic therapy for osteoporosis.

Recker RR, Benson CT, Matsumoto T, Bolognese MA…
J. Bone Miner. Res. Feb 2015
PMID: 25196993 | Free Full Text