Category Archives: Inositol

Review: Resveratrol, Inositol, Vitamin D and K for Bone and Cardiovascular Risk


Resveratrol, inositol, vitamin D and K in the prevention of cardiovascular and osteoporotic risk: a novel approach in peri- and postmenopause.

The prevention of cardiovascular and osteoporotic risk is a topic of great importance in the peri- and postmenopausal periods. This paper reviews the role of resveratrol, inositol, vitamin D and K in the prevention of cardiovascular and osteoporotic risk in peri- and post-. The phytoestrogen-like activity of resveratrol has potential clinical implications in the gynecological practice. In particular transresveratrol inhibits low-density lipoprotein oxidation, which is a recognized risk factor for cardiovascular diseases. Resveratrol has also a documented antiplatelet effect and may prevent cardiovascular diseases inhibiting the cardiac fibroblasts proliferation. With regard to bone health, in in vitro studies resveratrol has shown activities in osteoblastic MC3T3-E1 cells. Resveratrol also interacts with vitamin D in promoting bone health. Resveratrol is considered a caloric restriction mimetic and potentially effects factors involved in the metabolic syndrome. Myo-inositol has documented in clinical studies its effectiveness in improving the metabolic syndrome in post menopausal women. Thus the supplementation with inositol and resveratrol may be useful in the prevention of insulin resistance and consequently metabolic syndrome and cardiovascular diseases risk. Finally vitamin K2 effects calcium metabolisms and subjects with higher levels of calcium in the bones tend to have a lower frequency of vascular calcifications and a lower cardiovascular risk. Vitamin K2 also has a key role in the bone homeostasis. A supplement including resveratrol, inositol, vitamin K and vitamin D offers a novel opportunity to the woman in peri- and postmenopause.

Parazzini F
Minerva Ginecol Oct 2014
PMID: 25245999

D-Pinitol Inhibits Osteoclasts in Rats


D-pinitol inhibits RANKL-induced osteoclastogenesis.

Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. D-pinitol, a 3-methoxy analogue of D-chiroinositol, was identified as an active principle in soy foods and legumes. Here we found that D-pinitol markedly inhibited the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastic differentiation from bone marrow stromal cells and RAW264.7 macrophage cells. In addition, D-pinitol also reduced RANKL-induced p38 and JNK phosphorylation. Furthermore, RANKL-mediated increase of IKK, IκBα, and p65 phosphorylation and NF-κB-luciferase activity was inhibited by D-pinitol. However, D-pinitol did not affect the proliferation and differentiation of osteoblasts. In addition, D-pinitol also prevented the bone loss induced by ovariectomy in vivo. Our data suggest that D-pinitol inhibits osteoclastogenesis from bone marrow stromal cells and macrophage cells via attenuated RANKL-induced p38, JNK, and NF-κB activation, which in turn protect bone loss from ovariectomy.

Liu SC, Chuang SM, Tang CH
Int. Immunopharmacol. Mar 2012
PMID: 22269833

D-Chiro-Inositol Inhibits Osteoclasts In Vitro


D-chiro-inositol negatively regulates the formation of multinucleated osteoclasts by down-regulating NFATc1.

Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation.
To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP(+) mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1).
We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1.
We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.

Yu J, Choi S, Park ES, Shin B…
J. Clin. Immunol. Dec 2012
PMID: 22711011

Inositol is Essential for Osteogenesis and Bone Formation in Mice


Sodium/myo-inositol cotransporter 1 and myo-inositol are essential for osteogenesis and bone formation.

myo-Inositol (MI) plays an essential role in several important processes of cell physiology, is involved in the neural system, and provides an effective treatment for some psychiatric disorders. Its role in osteogenesis and bone formation nonetheless is unclear. Sodium/MI cotransporter 1 (SMIT1, the major cotransporter of MI) knockout (SMIT1(-/-)) mice with markedly reduced tissue MI levels were used to characterize the essential roles of MI and SMIT1 in osteogenesis. SMIT1(-/-) embryos had a dramatic delay in prenatal mineralization and died soon after birth owing to respiratory failure, but this could be rescued by maternal MI supplementation. The rescued SMIT1(-/-) mice had shorter limbs, decreased bone density, and abnormal bone architecture in adulthood. Deletion of SMIT1 resulted in retarded postnatal osteoblastic differentiation and bone formation in vivo and in vitro. Continuous MI supplementation partially restored the abnormal bone phenotypes in adult SMIT1(-/-) mice and strengthened bone structure in SMIT1(+/+) mice. Although MI content was much lower in SMIT1(-/-) mesenchymal cells (MSCs), the I(1,4,5)P(3) signaling pathway was excluded as the means by which SMIT1 and MI affected osteogenesis. PCR expression array revealed Fgf4, leptin, Sele, Selp, and Nos2 as novel target genes of SMIT1 and MI. SMIT1 was constitutively expressed in multipotential C3H10T1/2 and preosteoblastic MC3T3-E1 cells and could be upregulated during bone morphogenetic protein 2 (BMP-2)-induced osteogenesis. Collectively, this study demonstrated that deficiency in SMIT1 and MI has a detrimental impact on prenatal skeletal development and postnatal bone remodeling and confirmed their essential roles in osteogenesis, bone formation, and bone mineral density (BMD) determination.

Dai Z, Chung SK, Miao D, Lau KS…
J. Bone Miner. Res. Mar 2011
PMID: 20818642