Category Archives: Propolis

Propolis Inhibits IL-17


Suppression of interleukin 17 production by Brazilian propolis in mice with collagen-induced arthritis.

Propolis is a resinous substance collected by honeybees from leaf buds and cracks in the bark of various plants. Propolis has been reported to have immunomodulatory activity. We hypothesized that propolis would be able to reduce the disease severity of rheumatoid arthritis. We evaluated the effect of Brazilian propolis ethanolic extract on the pathogenesis of collagen-induced arthritis (CIA) in mice. Mice fed propolis exhibited significant lower clinical arthritis scores than those fed the control diet. To investigate the mechanism of the effect of propolis on CIA mice, we examined interleukin-17 (IL-17) production in CIA mice fed propolis using an enzyme-linked immunospot assay and flow cytometric analysis. The numbers of IL-17-producing cells in the CIA mice fed propolis were significantly decreased. To determine direct influence of propolis on cytokine production, splenocytes were stimulated with phorbol myristate acetate in the presence of propolis extract in vitro. Concentration-dependent declines in IL-17 expression were observed by ELISA and real-time PCR methods. We further found that propolis significantly inhibited the differentiation of Th17 cells from murine splenocytes in a concentration-dependent manner. Taken together, our results may provide a new light on the potential mechanism of the immunosuppressive and anti-inflammatory effects of propolis.

Tanaka M, Okamoto Y, Fukui T, Masuzawa T
Inflammopharmacology Feb 2012
PMID: 21861090

IL-17 is implicated in osteoporosis.

CAPE (From Propolis) Inhibits Resorption in Human Cells


Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-kappaB and NFAT activity.

Receptor activator NF-kappaB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation and survival. Caffeic acid phenethyl ester (CAPE), a natural NF-kappaB inhibitor from honeybee propolis has been shown to have anti-tumor and anti-inflammatory properties. In this study, we investigated the effect of CAPE on the regulation of RANKL-induced osteoclastogenesis, bone resorption and signaling pathways. Low concentrations of CAPE (<1 microM) dose dependently inhibited RANKL-induced osteoclastogenesis in RAW264.7 cell and bone marrow macrophage (BMM) cultures, as well as decreasing the capacity of human osteoclasts to resorb bone. CAPE inhibited both constitutive and RANKL-induced NF-kappaB and NFAT activation, concomitant with delayed IkappaBalpha degradation and inhibition of p65 nuclear translocation. At higher concentrations, CAPE induced apoptosis and caspase 3 activities of RAW264.7 and disrupts the microtubule network in osteoclast like (OCL) cells. Taken together, our findings demonstrate that inhibition of NF-kappaB and NFAT activation by CAPE results in the attenuation of osteoclastogenesis and bone resorption, implying that CAPE is a potential treatment for osteolytic bone diseases.

Ang ES, Pavlos NJ, Chai LY, Qi M…
J. Cell. Physiol. Dec 2009
PMID: 19681045

CAPE (From Propolis) Inhibits Osteoclasts


Caffeic acid phenethyl ester inhibits osteoclastogenesis by suppressing NF kappaB and downregulating NFATc1 and c-Fos.

Osteoclasts are multinuclear cells of myeloid lineage responsible for bone resorption. The anti-inflammatory property of caffeic acid phenethyl ester (CAPE), an active component of the propolis of honeybee hives, has been revealed. Since the regulatory mechanism of differentiation and activation of osteoclasts shares many well-known signaling pathways with that of inflammation, we investigated whether CAPE has any effect on osteoclastogenesis. CAPE potently suppressed osteoclastogenesis in cultures of bone marrow-derived precursor cells with the osteoclast differentiation factor, receptor activator of nuclear factor kappaB ligand (RANKL). While the RANKL-stimulated activation of the ERK, JNK, and p38 MAPK signaling pathways was not affected, the DNA binding and transcription activity of NF kappaB were reduced by CAPE treatment. In addition, CAPE blocked the induction of NFATc1 and c-Fos following RANKL stimulation. Forced expression of c-Fos could reverse the inhibitory effect of CAPE on osteoclastogenesis. Finally, CAPE significantly inhibited the RANKL-induced osteoclast formation in mouse calvariae in vivo. We propose that CAPE might be useful as a therapeutic agent for treatment of bone destructive diseases.

Ha J, Choi HS, Lee Y, Lee ZH…
Int. Immunopharmacol. Jun 2009
PMID: 19285574