Category Archives: EPA

Genistein + EPA + DHA + Vitamin D + K1 Increases Bone Density in Postmenopausal Women


Effect of a combination of genistein, polyunsaturated fatty acids and vitamins D3 and K1 on bone mineral density in postmenopausal women: a randomized, placebo-controlled, double-blind pilot study.

Many postmenopausal women desire non-pharmaceutical alternatives to hormone therapy for protection against osteoporosis. Soybean isoflavones, especially genistein, are being studied for this purpose. This study examined the effects of synthetic genistein in combination with other potential bone-protective dietary molecules on bone mineral density (BMD) in early postmenopausal women.
In this 6-month double-blind pilot study, 70 subjects were randomized to receive daily either calcium only or the geniVida™ bone blend (GBB), which consisted of genistein (30 mg/days), vitamin D3 (800 IU/days), vitamin K1 (150 μg/days) and polyunsaturated fatty acids (1 g polyunsaturated fatty acids as ethyl ester: eicosapentaenoic acid/docosahexaenoic acid ratio = ~2/1). Markers of bone resorption and formation and BMD at the femoral neck, lumbar spine, Ward’s triangle, trochanter and intertrochanter, total hip and whole body were assessed.
Subjects supplemented with the GBB (n = 30) maintained femoral neck BMD, whereas in the placebo group (n = 28), BMD significantly decreased (p = 0.007). There was also a significant difference (p < 0.05) in BMD between the groups at Ward’s triangle in favor of the GBB group. Bone-specific alkaline phosphatase and N-telopeptide significantly increased in the GBB group in comparison with those in baseline and in the placebo group. The GBB was well tolerated, and there were no significant differences in adverse events between groups.
The GBB may help to prevent osteoporosis and reduce fracture risk, at least at the hip, in postmenopausal women. Larger and longer-term clinical trials are warranted.

Lappe J, Kunz I, Bendik I, Prudence K…
Eur J Nutr Feb 2013
PMID: 22302614 | Free Full Text

High Omega-6:Omega-3 Ratios Increase Fracture Risk and Doubles Risk for Ratios > 6


The association of red blood cell n-3 and n-6 fatty acids with bone mineral density and hip fracture risk in the women’s health initiative.

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFA) in red blood cells (RBCs) are an objective indicator of PUFA status and may be related to hip fracture risk. The primary objective of this study was to examine RBC PUFAs as predictors of hip fracture risk in postmenopausal women. A nested case-control study (n = 400 pairs) was completed within the Women’s Health Initiative (WHI) using 201 incident hip fracture cases from the Bone Mineral Density (BMD) cohort, along with 199 additional incident hip fracture cases randomly selected from the WHI Observational Study. Cases were 1:1 matched on age, race, and hormone use with non-hip fracture controls. Stored baseline RBCs were analyzed for fatty acids using gas chromatography. After removing degraded samples, 324 matched pairs were included in statistical analyses. Stratified Cox proportional hazard models were constructed according to case-control pair status; risk of fracture was estimated for tertiles of RBC PUFA. In adjusted hazard models, lower hip fracture risk was associated with higher RBC α-linolenic acid (tertile 3 [T3] hazard ratio [HR]: 0.44; 95% confidence interval [CI], 0.23-0.85; p for linear trend 0.0154), eicosapentaenoic acid (T3 HR: 0.46; 95% CI, 0.24-0.87; p for linear trend 0.0181), and total n-3 PUFAs (T3 HR: 0.55; 95% CI, 0.30-1.01; p for linear trend 0.0492). Conversely, hip fracture nearly doubled with the highest RBC n-6/n-3 ratio (T3 HR: 1.96; 95% CI, 1.03-3.70; p for linear trend 0.0399). RBC PUFAs were not associated with BMD. RBC PUFAs were indicative of dietary intake of marine n-3 PUFAs (Spearman’s rho = 0.45, p < 0.0001), total n-6 PUFAs (rho = 0.17, p < 0.0001) and linoleic acid (rho = 0.09, p < 0.05). These results suggest that higher RBC α-linolenic acid, as well as eicosapentaenoic acid and total n-3 PUFAs, may predict lower hip fracture risk. Contrastingly, a higher RBC n-6/n-3 ratio may predict higher hip fracture risk in postmenopausal women.

Orchard TS, Ing SW, Lu B, Belury MA…
J. Bone Miner. Res. Mar 2013
PMID: 23018646 | Free Full Text

The full text has a nice chart showing the hazard ratios for the various fatty acids they looked at.

The Omega-6:Omega-3 ratios and their respective hazard ratios were:

Omega-6:Omega-3 Ratio 1.48–5.00 5.01–6.07 6.08–10.59
Hazard Ratio 1.00 1.28 (0.71–2.30) 1.96 (1.03–3.70)

[Hazard Ratios] for hip fracture by tertiles of RBC FAs with multivariate adjustment for risk factors per Robbins and colleagues37 are reported in Table 3. No significant associations were found between RBC total SFA, MUFA, or PUFA and risk of hip fracture. However, there was a significant inverse linear association between hip fracture risk and total n-3 FAs in RBCs (p for linear trend 0.0492). When examining individual n-3 FAs, there was a 56% lower relative risk of hip fracture with highest RBC ALA (tertile 3 [T3] hazard ratio [HR]: 0.44; 95% CI, 0.23–0.85; p for linear trend 0.0154), and a 54% lower hip fracture risk with highest EPA levels (T3 HR: 0.46; 95% CI, 0.24–0.87; p for linear trend 0.0181) compared to T1. Neither DHA nor the n-3 index was significantly associated with risk of fracture. In contrast, hip fracture risk nearly doubled in women in the highest tertile of the n-6/n-3 FA ratio (HR T3: 1.96; 95% CI, 1.03–3.70; p for linear trend 0.0399). Because the n-6/n-3 FA ratio in RBCs primarily reflects the ratio of AA to EPA and DHA, we further examined the relation of the AA/EPA + DHA ratio to hip fracture risk. Similar to the n-6/n-3 FA ratio, a higher AA/EPA + DHA ratio produced higher HR for hip fracture, but the association was not significant (T3 HR: 1.69; 95% CI, 0.86–3.31; p for linear trend 0.1242). Although the direction of association between total n-6 FAs, AA, and hip fracture was toward harm, there was no significant relation of either total n-6 FAs or AA with hip fracture. There was an inverse direction of association between LA and hip fracture risk, but again, this was not statistically significant (T3 HR: 0.77; 95% CI, 0.40–1.49; p for linear trend 0.5140). Inclusion of additional potential confounders (alcohol consumption, total energy intake, total calcium intake, total vitamin D intake, and multivitamin use) in the model produced similar results….

Review: Studies on GLA, Omega 3, and Other Fatty Acids


Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties.

Dietary polyunsaturated fatty acids (PUFA) have effects on diverse physiological processes impacting normal health and chronic diseases, such as the regulation of plasma lipid levels, cardiovascular and immune function, insulin action and neuronal development and visual function. Ingestion of PUFA will lead to their distribution to virtually every cell in the body with effects on membrane composition and function, eicosanoid synthesis, cellular signaling and regulation of gene expression. Cell specific lipid metabolism, as well as the expression of fatty acid-regulated transcription factors, likely play an important role in determining how cells respond to changes in PUFA composition. This review will focus on recent advances on the essentiality of these molecules and on their interplay in cell physiology, leading to new perspective in different therapeutic fields.

Benatti P, Peluso G, Nicolai R, Calvani M
J Am Coll Nutr Aug 2004
PMID: 15310732 | Free Full Text

This article reviewed, among many others, the study from EPA + GLA Increases Bone Density in Elderly Women:

In a single-blind, randomized study, Kruger et al. [174] tested the interactions between calcium and DGLA + EPA in osteoporotic or osteopenic women. All of the women were living in the same institution for the elderly and fed the same low-calcium, non-vitamin D enriched foods, and had similar amounts of sunlight. Subjects were randomly assigned to DGLA + EPA or coconut oil (placebo group); in addition, all received 600 mg/day of calcium. Markers of bone formation/degradation and bone mineral density (BMD) were measured at baseline, 6, 12 and 18 months. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both groups, indicating a decrease in bone turnover, whereas bone specific ALP rose indicating beneficial effects of calcium given to all the patients. Lumbar and femoral BMD, in contrast, showed different results in the two groups. Over the first 18 months, lumbar spine density remained the same in the treatment group, but decreased 3.2% in the placebo group. Femoral bone density increased 1.3% in the treatment group, but decreased 2.1% in the placebo group. During the second period of 18 months with all patients now on active treatment, lumbar spine density increased 3.1% in patients who remained on active treatment, and 2.3% in patients who switched from placebo to active treatment; femoral BMD in the latter group showed an increase of 4.7%.


EPA and DHA may Decrease, but GLA may Increase, Osteoclasts in Mouse Cells


Long chain polyunsaturated fatty acids alter membrane-bound RANK-L expression and osteoprotegerin secretion by MC3T3-E1 osteoblast-like cells.

Inflammation triggers an increase in osteoclast (bone resorbing cell) number and activity. Osteoclastogenesis is largely controlled by a triad of proteins consisting of a receptor (RANK), a ligand (RANK-L) and a decoy receptor (osteoprotegerin, OPG). Whilst RANK is expressed by osteoclasts, RANK-L and OPG are expressed by osteoblasts. The long chain polyunsaturated fatty acid (LCPUFA) arachidonic acid (AA, 20:4n-6) and its metabolite prostaglandin E2 (PGE2), are pro-inflammatory and PGE2 is a potent stimulator of RANKL expression. Various LCPUFAs such as eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and gamma-linolenic acid (GLA, 18:3n-6) have anti-inflammatory activity. We aimed to determine if AA itself can stimulate RANKL expression and whether EPA, DHA and GLA inhibit RANKL expression in osteoblasts. MC3T3-E1/4 osteoblast-like cells were cultured under standard conditions with each of the LCPUFAs (5microg/ml) for 48h. Membrane-bound RANKL expression was measured by flow cytometry and OPG secretion measured by ELISA. In a second experiment, RANKL expression in MC3T3-E1/4 cells was stimulated by PGE2 treatment and the effect of EPA, DHA and GLA on membrane-bound RANKL expression and OPG secretion determined. The percentage of RANKL-positive cells was higher (p<0.05) than controls following treatment with AA or GLA but not after co-treatment with the cyclooxygenase inhibitor, indomethacin. DHA and EPA had no effect on membrane-bound RANKL expression under standard cell culture conditions. Secretion of OPG was lower (p<0.05) in AA-treated cells but not significantly different from controls in GLA, EPA or DHA treated cells. Treatment with prostaglandin E2 (PGE2) resulted in an increase (p<0.05) in the percentage of RANK-L positive cells and a decrease (p<0.05) in mean OPG secretion. The percentage of RANKL positive cells was significantly lower following co-treatment with PGE2 and either DHA or EPA compared to treatment with PGE2 alone. Mean OPG secretion remained lower than controls in cells treated with PGE2 regardless of co-treatment with EPA or DHA. Results from this study suggest COX products of GLA and AA induce membrane-bound RANKL expression in MC3T3-E1/4 cells. EPA and DHA have no effect on membrane-bound RANKL expression in cells cultured under standard conditions however both EPA and DHA inhibit the PGE2-induced increase in RANKL expression in MC3T3-E1/4 cells.

Poulsen RC, Wolber FM, Moughan PJ, Kruger MC
Prostaglandins Other Lipid Mediat. Feb 2008
PMID: 18077200

Omega-3 Promotes Bone in Young Rats


Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (P<0.009) tibial bone mineral density (BMD) and bone mineral content (BMC) and lower (P=0.05) lipid peroxidation compared to the CO-fed rats. Reduced lipid peroxidation was associated with increased tibial BMD (r2=0.08, P=0.02) and BMC (r2=0.71, P=0.01). On the other hand, rats fed FO or MO, rich in alpha-linolenic acid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage.

Lukas R, Gigliotti JC, Smith BJ, Altman S…
Bone Sep 2011
PMID: 21672645

Omega-3 Inhibits Osteoclasts In Vitro


The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis.

Arachidonic fatty acid (AA) induces adipogenesis in human mesenchymal stem cells cultures, and high concentrations inhibit osteoblastogenesis; whereas eicosapentaenoic and docosahexaenoic fatty acids do not induce adipogenesis and do not inhibit osteoblastogenesis. In mesenchymal stem cells, omega-6 arachidonic polyunsaturated fatty acid promotes the differentiation of adipocytes and inhibits the osteoblast differentiation. While omega-3 fatty acids do not affect the adipogenic differentiation their effects on osteoblastogenesis are less relevant. An increased ratio of omega-3/omega-6 fatty acid consumption can prevent bone mass loss.
Consumption of omega-3 may protect against osteoporosis since they may inhibit osteoclastogenesis. However, with aging, MSC in bone marrow are increasingly differentiated into adipocytes, reducing the number of osteoblasts. Products derived from omega-6 and omega-3 metabolism may affect MSC differentiation into osteoblasts and adipocytes.
Human MSC have been differentiated into osteoblasts or adipocytes in the presence of omega-6 (AA), or omega-3 (DHA and EPA), and osteoblastic and adipocytic markers have been analyzed.
AA decreases the expression of osteogenic markers and the osteoprotegerin/receptor activator of nuclear factor kappa β ligand gene expression ratio (opg/rankl). High concentrations of AA inhibit the mineralization and cause the appearance of adipocytes in MSC differentiating into osteoblasts to a higher extent than DHA or EPA. In MSC differentiated into adipocytes, AA increases adipogenesis, while DHA and EPA do not affect it. AA caused the appearance of adipocytes in undifferentiated MSC. The lipoxygenase gene (alox15b) is induced by omega-3 in MSC induced to osteoblasts, and by omega-6 in MSC induced to adipocytes.
An increase in the intake of omega-3 respect to omega-6 may provide protection against the loss of bone mass, since omega-6 favors the osteoclastic activity by diminishing the opg/rankl gene expression in osteoblasts and promotes MSC differentiation into adipocytes, thus diminishing the production of osteoblasts.

Casado-Díaz A, Santiago-Mora R, Dorado G, Quesada-Gómez JM
Osteoporos Int May 2013
PMID: 23104199

EPA + DHA: Possible Mechanism


PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA) influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R) are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK). From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA) and docosahexaenoic fatty acids (DHA) caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34)) in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA) and C (PKC), reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC), we detected conformational responses to EPA similar to those caused by PTH(1-34). PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34) leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt) phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

Candelario J, Tavakoli H, Chachisvilis M
PLoS ONE 2012
PMID: 23300710 | Free Full Text

In human studies, it has been shown that consuming EPA improved bone quality in elderly female subjects [21]. Consumption of ω-3 fatty acids was also associated with reduced incidence and severity of inflammatory bone/joint diseases in humans [22]. There is evidence of the potential of EPA to counteract bone loss associated with spaceflight; higher consumption of fish (ω-3) was associated with reduced loss of bone mineral density (BMD) after flight [23]. BMD of the total body showed a significant negative correlation with serum concentrations of oleic acids and monounsaturated fatty acids and significant correlations with DHA and ω-3 fatty acids [24]. A higher ratio of ω-6 to ω-3 fatty acids is associated with lower BMD at the hip in both sexes suggesting the relative amounts of dietary PUFA may play a vital role in preserving skeletal integrity in older age [25].

Review: Fish Oil Mechanisms of Action on Bone


Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone.

Evidence presented over the past 20 years has shown that long-chain polyunsaturated fatty acids (LCPUFAs), especially the n-3 fatty acids such as eicospentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health. Some studies in humans indicate that LCPUFAs can increase bone formation, affect peak bone mass in adolescents and reduce bone loss as measured using bone mineral densitometry. The cellular mechanisms of action of the LCPUFAs, however, are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signalling pathways, cytokines and growth factors. LCPUFAs affect receptor activator of nuclear factor κβ (RANK), a receptor found on the osteoclast, the cell causing bone resorption, which controls osteoclast formation. Lipoxygenase (LOX) generated lipid mediators (resolvins, lipoxins, protectins and docosanoids) have both anti-inflammatory and pro-resolving activities. Both resolvins and lipoxins inhibit inflammation-induced bone resorption. Arachidonic acid significantly upregulates inducible NO synthase (iNOS) mRNA expression in human osteoblast-like cells, thereby possibly enhancing osteoclastic activity. The protective effect of EPA on osteoblastogenesis could be mediated by the biphasic cross-talk between PGE(2) and NO production involving COX-2 and iNOS pathways. Other mediators of osteoblast maturation include PPARα ligands such as linoleic acid and possibly DHA in association with bone morphogenic proteins. Since DHA is a weaker ligand for PPARγ, more uncommitted mesenchymal stem cells are thought to differentiate into osteoblasts rather than adipocytes. This review addresses selected cellular mechanisms that may explain the beneficial effects of the LCPUFAs on bone.

Kruger MC, Coetzee M, Haag M, Weiler H
Prog. Lipid Res. Oct 2010
PMID: 20600307

EPA and DHA Improve Bone Properties in Mice


Effects of long-term supplementation with omega-3 fatty acids on longitudinal changes in bone mass and microstructure in mice.

A diet rich in omega-3s has previously been suggested to prevent bone loss. However, evidence for this has been limited by short exposure to omega-3 fatty acids (FAs). We investigated whether a diet enriched in eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for the entire adult life of mice could improve bone microstructure and strength. Thirty female mice received a diet enriched in DHA or EPA or an isocaloric control diet from 3 to 17 months of age. Changes in bone microstructure were analyzed longitudinally and biomechanical properties were analysed by a three-point bending test. Bone remodelling was evaluated by markers of bone turnover and histomorphometry. Trabecular bone volume in caudal vertebrae was improved by EPA or DHA at 8 months (+26.6% and +17.2%, respectively, compared to +3.8% in controls, P=.01), but not thereafter. Trabecular bone loss in the tibia was not prevented by omega-3 FAs (BV/TV -94%, -93% and -97% in EPA, DHA and controls, respectively). EPA improved femur cortical bone volume (+8.1%, P<.05) and thickness (+4.4%, P<.05) compared to controls. EPA, but not DHA, reduced age-related decline of osteocalcin (-70% vs. -83% in controls, P<.05). EPA and DHA increased leptin levels (7.3±0.7 and 8.5±0.5 ng ml⁻¹, respectively, compared to 4.5±0.9 ng ml⁻¹ in controls, P=.001); however, only EPA further increased IGF-1 levels (739±108 ng ml⁻¹, compared to 417±58 ng ml⁻¹ in controls, P=.04). These data suggest that long-term intake of omega-3 FA, particularly EPA, may modestly improve the structural and mechanical properties of cortical bone by an increase in leptin and IGF-1 levels, without affecting trabecular bone loss.

Bonnet N, Ferrari SL
J. Nutr. Biochem. Jul 2011
PMID: 21036590

EPA + DHA at 1.48g Shows No Benefit in Humans


Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults.

Previous research suggests that n-3 PUFA may play a role in bone health. The present analysis aimed to investigate the impact of n-3 PUFA supplementation on bone resorption in adult men and women. Serum samples from 113 mild-moderately depressed individuals (twenty-six males and eighty-seven females, aged 18-67 years) randomised to receive 1.48 g EPA+DHA/d (n 53) or placebo (n 60) for 12 weeks as part of a large recent randomised controlled trial were assayed for n-3 PUFA status and a bone resorption marker, C-terminal cross-linking telopeptide of type 1 collagen (β-CTX). Regression analyses revealed that n-3 PUFA status following supplementation was associated with randomisation (placebo/n-3 PUFA) (B = 3.25, 95 % CI 2.60, 3.91, P < 0.01). However, β-CTX status following supplementation was not associated with randomisation (B = – 0.01, 95 % CI – 0.03, 0.04). Change in β-CTX status was also not associated with change in n-3 PUFA status (B = – 0.002, 95 % CI – 0.01, 0.01). These findings provide no evidence for an association between n-3 PUFA supplementation (1.48 g EPA+DHA/d) for 12 weeks and bone resorption in humans assessed by β-CTX, and suggest that n-3 PUFA supplementation may be unlikely to be of benefit in preventing bone loss.

Appleton KM, Fraser WD, Rogers PJ, Ness AR…
Br. J. Nutr. Apr 2011
PMID: 21129235