Category Archives: Fish Oil

Genistein + EPA + DHA + Vitamin D + K1 Increases Bone Density in Postmenopausal Women


Effect of a combination of genistein, polyunsaturated fatty acids and vitamins D3 and K1 on bone mineral density in postmenopausal women: a randomized, placebo-controlled, double-blind pilot study.

Many postmenopausal women desire non-pharmaceutical alternatives to hormone therapy for protection against osteoporosis. Soybean isoflavones, especially genistein, are being studied for this purpose. This study examined the effects of synthetic genistein in combination with other potential bone-protective dietary molecules on bone mineral density (BMD) in early postmenopausal women.
In this 6-month double-blind pilot study, 70 subjects were randomized to receive daily either calcium only or the geniVida™ bone blend (GBB), which consisted of genistein (30 mg/days), vitamin D3 (800 IU/days), vitamin K1 (150 μg/days) and polyunsaturated fatty acids (1 g polyunsaturated fatty acids as ethyl ester: eicosapentaenoic acid/docosahexaenoic acid ratio = ~2/1). Markers of bone resorption and formation and BMD at the femoral neck, lumbar spine, Ward’s triangle, trochanter and intertrochanter, total hip and whole body were assessed.
Subjects supplemented with the GBB (n = 30) maintained femoral neck BMD, whereas in the placebo group (n = 28), BMD significantly decreased (p = 0.007). There was also a significant difference (p < 0.05) in BMD between the groups at Ward’s triangle in favor of the GBB group. Bone-specific alkaline phosphatase and N-telopeptide significantly increased in the GBB group in comparison with those in baseline and in the placebo group. The GBB was well tolerated, and there were no significant differences in adverse events between groups.
The GBB may help to prevent osteoporosis and reduce fracture risk, at least at the hip, in postmenopausal women. Larger and longer-term clinical trials are warranted.

Lappe J, Kunz I, Bendik I, Prudence K…
Eur J Nutr Feb 2013
PMID: 22302614 | Free Full Text

Omega-3 Associated with Peak Bone Density in Men


n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study.

Knowledge of the influence of nutritional intake on bone health is limited. Polyunsaturated fatty acids have been suggested to influence bone growth and modeling in humans, although data are sparse.
The objective was to investigate the role of fatty acids in bone accumulation and the attainment of peak bone mass in young men.
The cohort studied consisted of 78 healthy young men with a mean age of 16.7 y at baseline. Bone mineral density (BMD; in g/cm(2)) of total body, hip, and spine was measured at baseline and at 22 and 24 y of age. Fatty acid concentrations were measured in the phospholipid fraction in serum at 22 y of age.
Concentrations of n-3 fatty acids were positively associated with total BMD (r = 0.27, P = 0.02) and spine BMD (r = 0.25, P = 0.02) at 22 y of age. A positive correlation between n-3 fatty acid concentrations and the changes in BMD at the spine (r = 0.26, P = 0.02) was found between 16 and 22 y of age. Concentrations of docosahexaenoic acid (DHA, 22:6n-3) were positively associated with total BMD (r = 0.32, P = 0.004) and BMD at the spine (r = 0.30, P = 0.008) at 22 y of age. A positive correlation was also found between DHA concentrations and the changes in BMD at the spine (r = 0.26, P = 0.02) between 16 and 22 y of age.
The results showed that n-3 fatty acids, especially DHA, are positively associated with bone mineral accrual and, thus, with peak BMD in young men.

Högström M, Nordström P, Nordström A
Am. J. Clin. Nutr. Mar 2007
PMID: 17344503 | Free Full Text

High Omega-6:Omega-3 Ratios Increase Fracture Risk and Doubles Risk for Ratios > 6


The association of red blood cell n-3 and n-6 fatty acids with bone mineral density and hip fracture risk in the women’s health initiative.

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFA) in red blood cells (RBCs) are an objective indicator of PUFA status and may be related to hip fracture risk. The primary objective of this study was to examine RBC PUFAs as predictors of hip fracture risk in postmenopausal women. A nested case-control study (n = 400 pairs) was completed within the Women’s Health Initiative (WHI) using 201 incident hip fracture cases from the Bone Mineral Density (BMD) cohort, along with 199 additional incident hip fracture cases randomly selected from the WHI Observational Study. Cases were 1:1 matched on age, race, and hormone use with non-hip fracture controls. Stored baseline RBCs were analyzed for fatty acids using gas chromatography. After removing degraded samples, 324 matched pairs were included in statistical analyses. Stratified Cox proportional hazard models were constructed according to case-control pair status; risk of fracture was estimated for tertiles of RBC PUFA. In adjusted hazard models, lower hip fracture risk was associated with higher RBC α-linolenic acid (tertile 3 [T3] hazard ratio [HR]: 0.44; 95% confidence interval [CI], 0.23-0.85; p for linear trend 0.0154), eicosapentaenoic acid (T3 HR: 0.46; 95% CI, 0.24-0.87; p for linear trend 0.0181), and total n-3 PUFAs (T3 HR: 0.55; 95% CI, 0.30-1.01; p for linear trend 0.0492). Conversely, hip fracture nearly doubled with the highest RBC n-6/n-3 ratio (T3 HR: 1.96; 95% CI, 1.03-3.70; p for linear trend 0.0399). RBC PUFAs were not associated with BMD. RBC PUFAs were indicative of dietary intake of marine n-3 PUFAs (Spearman’s rho = 0.45, p < 0.0001), total n-6 PUFAs (rho = 0.17, p < 0.0001) and linoleic acid (rho = 0.09, p < 0.05). These results suggest that higher RBC α-linolenic acid, as well as eicosapentaenoic acid and total n-3 PUFAs, may predict lower hip fracture risk. Contrastingly, a higher RBC n-6/n-3 ratio may predict higher hip fracture risk in postmenopausal women.

Orchard TS, Ing SW, Lu B, Belury MA…
J. Bone Miner. Res. Mar 2013
PMID: 23018646 | Free Full Text

The full text has a nice chart showing the hazard ratios for the various fatty acids they looked at.

The Omega-6:Omega-3 ratios and their respective hazard ratios were:

Omega-6:Omega-3 Ratio 1.48–5.00 5.01–6.07 6.08–10.59
Hazard Ratio 1.00 1.28 (0.71–2.30) 1.96 (1.03–3.70)

[Hazard Ratios] for hip fracture by tertiles of RBC FAs with multivariate adjustment for risk factors per Robbins and colleagues37 are reported in Table 3. No significant associations were found between RBC total SFA, MUFA, or PUFA and risk of hip fracture. However, there was a significant inverse linear association between hip fracture risk and total n-3 FAs in RBCs (p for linear trend 0.0492). When examining individual n-3 FAs, there was a 56% lower relative risk of hip fracture with highest RBC ALA (tertile 3 [T3] hazard ratio [HR]: 0.44; 95% CI, 0.23–0.85; p for linear trend 0.0154), and a 54% lower hip fracture risk with highest EPA levels (T3 HR: 0.46; 95% CI, 0.24–0.87; p for linear trend 0.0181) compared to T1. Neither DHA nor the n-3 index was significantly associated with risk of fracture. In contrast, hip fracture risk nearly doubled in women in the highest tertile of the n-6/n-3 FA ratio (HR T3: 1.96; 95% CI, 1.03–3.70; p for linear trend 0.0399). Because the n-6/n-3 FA ratio in RBCs primarily reflects the ratio of AA to EPA and DHA, we further examined the relation of the AA/EPA + DHA ratio to hip fracture risk. Similar to the n-6/n-3 FA ratio, a higher AA/EPA + DHA ratio produced higher HR for hip fracture, but the association was not significant (T3 HR: 1.69; 95% CI, 0.86–3.31; p for linear trend 0.1242). Although the direction of association between total n-6 FAs, AA, and hip fracture was toward harm, there was no significant relation of either total n-6 FAs or AA with hip fracture. There was an inverse direction of association between LA and hip fracture risk, but again, this was not statistically significant (T3 HR: 0.77; 95% CI, 0.40–1.49; p for linear trend 0.5140). Inclusion of additional potential confounders (alcohol consumption, total energy intake, total calcium intake, total vitamin D intake, and multivitamin use) in the model produced similar results….

Review: Essential Fatty Acids may Help Bones


Can manipulation of the ratios of essential fatty acids slow the rapid rate of postmenopausal bone loss?

The rapid rate of postmenopausal bone loss is mediated by the inflammatory cytokines interleukin-1, interleukin-6, and tumor necrosis factor alpha. Dietary supplementation with fish oil, flaxseeds, and flaxseed oil in animals and healthy humans significantly reduces cytokine production while concomitantly increasing calcium absorption, bone calcium, and bone density. Possibilities may exist for the therapeutic use of the omega-3 fatty acids, as supplements or in the diet, to blunt the increase of the inflammatory bone resorbing cytokines produced in the early postmenopausal years, in order to slow the rapid rate of postmenopausal bone loss. Evidence also points to the possible benefit of gamma-linolenic acid in preserving bone density.

Kettler DB
Altern Med Rev Feb 2001
PMID: 11207457 | Free Full Text

Fish Oil or Borage Oil Improve Bone in Mice


Borage and fish oils lifelong supplementation decreases inflammation and improves bone health in a murine model of senile osteoporosis.

Fats are prevalent in western diets; they have known deleterious effects on muscle insulin resistance and may contribute to bone loss. However, relationships between fatty acids and locomotor system dysfunctions in elderly population remain controversial. The aim of this study was to analyze the impact of fatty acid quality on the age related evolution of the locomotor system and to understand which aging mechanisms are involved. In order to analyze age related complications, the SAMP8 mouse strain was chosen as a progeria model as compared to the SAMR1 control strain. Then, two months old mice were divided in different groups and subjected to the following diets : (1) standard “growth” diet – (2) “sunflower” diet (high ω6/ω3 ratio) – (3) “borage” diet (high γ-linolenic acid) – (4) “fish” diet (high in long chain ω3). Mice were fed ad libitum through the whole protocol. At 12 months old, the mice were sacrificed and tissues were harvested for bone studies, fat and muscle mass measures, inflammation parameters and bone cell marker expression. We demonstrated for the first time that borage and fish diets restored inflammation and bone parameters using an original model of senile osteoporosis that mimics clinical features of aging in humans. Therefore, our study strongly encourages nutritional approaches as relevant and promising strategies for preventing aged-related locomotor dysfunctions.

Wauquier F, Barquissau V, Léotoing L, Davicco MJ…
Bone Feb 2012
PMID: 21664309

Review: Studies on GLA, Omega 3, and Other Fatty Acids


Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties.

Dietary polyunsaturated fatty acids (PUFA) have effects on diverse physiological processes impacting normal health and chronic diseases, such as the regulation of plasma lipid levels, cardiovascular and immune function, insulin action and neuronal development and visual function. Ingestion of PUFA will lead to their distribution to virtually every cell in the body with effects on membrane composition and function, eicosanoid synthesis, cellular signaling and regulation of gene expression. Cell specific lipid metabolism, as well as the expression of fatty acid-regulated transcription factors, likely play an important role in determining how cells respond to changes in PUFA composition. This review will focus on recent advances on the essentiality of these molecules and on their interplay in cell physiology, leading to new perspective in different therapeutic fields.

Benatti P, Peluso G, Nicolai R, Calvani M
J Am Coll Nutr Aug 2004
PMID: 15310732 | Free Full Text

This article reviewed, among many others, the study from EPA + GLA Increases Bone Density in Elderly Women:

In a single-blind, randomized study, Kruger et al. [174] tested the interactions between calcium and DGLA + EPA in osteoporotic or osteopenic women. All of the women were living in the same institution for the elderly and fed the same low-calcium, non-vitamin D enriched foods, and had similar amounts of sunlight. Subjects were randomly assigned to DGLA + EPA or coconut oil (placebo group); in addition, all received 600 mg/day of calcium. Markers of bone formation/degradation and bone mineral density (BMD) were measured at baseline, 6, 12 and 18 months. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both groups, indicating a decrease in bone turnover, whereas bone specific ALP rose indicating beneficial effects of calcium given to all the patients. Lumbar and femoral BMD, in contrast, showed different results in the two groups. Over the first 18 months, lumbar spine density remained the same in the treatment group, but decreased 3.2% in the placebo group. Femoral bone density increased 1.3% in the treatment group, but decreased 2.1% in the placebo group. During the second period of 18 months with all patients now on active treatment, lumbar spine density increased 3.1% in patients who remained on active treatment, and 2.3% in patients who switched from placebo to active treatment; femoral BMD in the latter group showed an increase of 4.7%.


Fish Oil Reduces Bone Resorption in Postmenopausal Women Taking Aromatase Inhibitors


High-dose eicosapentaenoic acid and docosahexaenoic acid supplementation reduces bone resorption in postmenopausal breast cancer survivors on aromatase inhibitors: a pilot study.

Postmenopausal breast cancer survivors are living longer; however, a common class of drugs, aromatase inhibitors (AI), depletes estrogen levels, promotes bone loss, and heightens fracture risk. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may offset AI effects to bone because of the known effects on cellular processes of bone turnover. Therefore, we hypothesized that 4 g of EPA and DHA daily for 3 mo would decrease bone turnover in postmenopausal breast cancer survivors on AI therapy in a randomized, double-blind, placebo controlled pilot study that included 38 women. At baseline and 3 mo, serum fatty acids, bone turnover, and inflammatory markers were analyzed. Serum EPA and DHA, total and long-chain (LC) omega (n)-3 polyunsaturated fatty acids (PUFA) increased, whereas arachidonic acid, total and LC n-6 PUFA, and the LC n-6:n-3 PUFA ratio decreased compared to placebo (all P < .05). Bone resorption was inhibited in the fish oil responders compared to placebo (P < .05). Inflammatory markers were not altered. This short-term, high-dose fish oil supplementation study’s findings demonstrate that fish oil can reduce bone resorption; however, longer-term studies are needed to assess bone density preservation and to explore mechanistic pathways in this population at high risk for bone loss.

Hutchins-Wiese HL, Picho K, Watkins BA, Li Y…
Nutr Cancer 2014
PMID: 24274259

Fish Oil Benefits Bone in Salt-Loaded Rats


Benefits of omega-3 fatty acid against bone changes in salt-loaded rats: possible role of kidney.

There is evidence that dietary fats are important components contributing in bone health and that bone mineral density is inversely related to sodium intake. Salt loading is also known to impose negative effects on renal function. The present study aimed to determine the effect of the polyunsaturated fatty acid omega-3 on bone changes imposed by salt loading, highlighting the role of kidney as a potential mechanism involved in this effect. Male Wistar rats were divided into three groups: control group, salt-loaded group consuming 2% NaCl solution as drinking water for 8 weeks, and omega-3-treated salt-loaded group receiving 1 g/kg/day omega-3 by gavage with consumption of 2% NaCl solution for 8 weeks. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded. Plasma levels of sodium, potassium, calcium, inorganic phosphorus (Pi), alkaline phosphatase (ALP), creatinine, urea, 1,25-dihydroxyvitamin D [1,25(OH)2D3], and transforming growth factor-beta1 (TGF-β1) were measured. The right tibia and kidney were removed for histologic examination and renal immunohistochemical analysis for endothelial nitric oxide synthase (eNOS) was performed. The results revealed that omega-3 reduced SBP, DBP, and MAP and plasma levels of sodium, potassium, Pi, creatinine, urea, and TGF-β1, but increased plasma levels of calcium, ALP, and 1,25(OH)2D3 as well as renal eNOS. Omega-3 increased cortical and trabecular bone thickness, decreased osteoclast number, and increased newly formed osteoid bone. Renal morphology was found preserved. In conclusion, omega-3 prevents the disturbed bone status imposed by salt loading. This osteoprotective effect is possibly mediated by attenuation of alterations in Ca(2+), Pi, and ALP, and improvement of renal function and arterial blood pressure.

Ahmed MA, Abd El Samad AA
Physiol Rep Oct 2013
PMID: 24303178 | Free Full Text

The acquisition and maintenance of bone mass and strength are influenced by environmental factors, including physical activity and nutrition (Massey and Whiting 1996). Nutrition is important to bone health, and a number of minerals and vitamins have been identified as playing a potential role in the prevention of bone diseases, particularly osteoporosis (Massey and Whiting 1996). Evidence indicates that dietary fats can influence bone health (Tartibian et al. 2010), in particular the omega-3 (n-3) polyunsaturated fatty acids (PUFAs), as they have been shown to inhibit osteoclast activity and enhance osteoblast activity (Watkins et al. 2003). Eicosapentaenoic acid (EPA) supplementation was found to increase bone mineral density in postmenopausal women (Terano 2001). Beneficial effects of n-3 PUFAs on markers of bone resorption and formation in animal (Shen et al. 2006) and human (Griel et al. 2007) studies have, also, been observed.

On the other hand, a number of studies suggested a detrimental effect of dietary salt on bone. Devine et al. (1995) showed that change in bone mineral density was inversely related to sodium intake and that both dietary calcium and urinary sodium excretion were significant determinants of the change in bone mass. High-sodium diet was found to increase urinary calcium excretion and cause loss of bone calcium (Chan and Swaminathan 1998), while reducing sodium intake complemented the beneficial skeletal effects of the Dietary Approaches to Stop Hypertension diet (Lin et al. 2003). Furthermore, an epidemiological study of men and women has shown that salt intake is associated with markers of bone resorption and appears likely to be a risk factor for osteoporosis (Jones et al. 1997). Similar effect of sodium loading has been demonstrated in animal model (Gold and Gouldin 1995).


Olive Oil or Fish Oil, but Not Sunflower Oil, Prevent Age-Related Bone Resorption


Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms.

Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats.
Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations.
The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.

Bullon P, Battino M, Varela-Lopez A, Perez-Lopez P…
PLoS ONE 2013
PMID: 24066124 | Free Full Text

EPA and DHA may Decrease, but GLA may Increase, Osteoclasts in Mouse Cells


Long chain polyunsaturated fatty acids alter membrane-bound RANK-L expression and osteoprotegerin secretion by MC3T3-E1 osteoblast-like cells.

Inflammation triggers an increase in osteoclast (bone resorbing cell) number and activity. Osteoclastogenesis is largely controlled by a triad of proteins consisting of a receptor (RANK), a ligand (RANK-L) and a decoy receptor (osteoprotegerin, OPG). Whilst RANK is expressed by osteoclasts, RANK-L and OPG are expressed by osteoblasts. The long chain polyunsaturated fatty acid (LCPUFA) arachidonic acid (AA, 20:4n-6) and its metabolite prostaglandin E2 (PGE2), are pro-inflammatory and PGE2 is a potent stimulator of RANKL expression. Various LCPUFAs such as eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and gamma-linolenic acid (GLA, 18:3n-6) have anti-inflammatory activity. We aimed to determine if AA itself can stimulate RANKL expression and whether EPA, DHA and GLA inhibit RANKL expression in osteoblasts. MC3T3-E1/4 osteoblast-like cells were cultured under standard conditions with each of the LCPUFAs (5microg/ml) for 48h. Membrane-bound RANKL expression was measured by flow cytometry and OPG secretion measured by ELISA. In a second experiment, RANKL expression in MC3T3-E1/4 cells was stimulated by PGE2 treatment and the effect of EPA, DHA and GLA on membrane-bound RANKL expression and OPG secretion determined. The percentage of RANKL-positive cells was higher (p<0.05) than controls following treatment with AA or GLA but not after co-treatment with the cyclooxygenase inhibitor, indomethacin. DHA and EPA had no effect on membrane-bound RANKL expression under standard cell culture conditions. Secretion of OPG was lower (p<0.05) in AA-treated cells but not significantly different from controls in GLA, EPA or DHA treated cells. Treatment with prostaglandin E2 (PGE2) resulted in an increase (p<0.05) in the percentage of RANK-L positive cells and a decrease (p<0.05) in mean OPG secretion. The percentage of RANKL positive cells was significantly lower following co-treatment with PGE2 and either DHA or EPA compared to treatment with PGE2 alone. Mean OPG secretion remained lower than controls in cells treated with PGE2 regardless of co-treatment with EPA or DHA. Results from this study suggest COX products of GLA and AA induce membrane-bound RANKL expression in MC3T3-E1/4 cells. EPA and DHA have no effect on membrane-bound RANKL expression in cells cultured under standard conditions however both EPA and DHA inhibit the PGE2-induced increase in RANKL expression in MC3T3-E1/4 cells.

Poulsen RC, Wolber FM, Moughan PJ, Kruger MC
Prostaglandins Other Lipid Mediat. Feb 2008
PMID: 18077200