Category Archives: Running

Exercise Limits Effects of Excessive Alcohol on Bone in Rats


Regular exercise limits alcohol effects on trabecular, cortical thickness and porosity, and osteocyte apoptosis in the rat.

Excessive alcohol consumption is known to be a cause of secondary osteoporosis whereas physical activity is recommended in prevention of osteoporosis. This study was designed to analyze the effects of physical exercise on bone parameters in chronic alcohol-fed rats.
Forty-eight male Wistar rats were divided in four groups: Control (C), Alcohol (A), Exercise (E) and Alcohol+Exercise (AE). A and AE groups drank a solution composed of ethanol and water (35% volume/volume for 17 weeks). E and AE groups were submitted to treadmill training for 14 weeks (60 min/day, 5 times/week). Bone mineral density (BMD) was assessed by DXA, the trabecular and cortical microarchitectural parameters by microCT and serum osteocalcin, NTx and leptin concentrations by ELISA assays. Bone mechanical parameters were evaluated through mechanical testing. Osteocyte apoptosis was analyzed with cleaved caspase-3 immunostaining.
Alcohol-fed rats had significantly lower body weight (-28%), fat (-46%) and lean mass (-25%) compared to controls. BMD (-8%), trabecular (-12%) and cortical thickness (-27%) were significantly lower with alcohol whereas porosity (+38%) and pore number (+42%) were higher. Exercise combined with alcohol prevented lower Tb.Th (+20%), Ct.Th (+30%), stress (+26%) and higher Ct.Po (-24%) and osteocyte apoptosis (-91%) compared to A. However, WB BMD (-4%) and femur BMD were still lower in AE versus C.
Regular physical activity has beneficial effects on some microarchitectural parameters in alcohol-fed rats. However, regular treadmill exercise does not compensate for the effects of heavy chronic alcohol consumption on whole body bone density.

Maurel DB, Boisseau N, Pallu S, Rochefort GY…
Joint Bone Spine Oct 2013
PMID: 23380443

Protein + Exercise Improves Bone Markers in Young Adults


Effect of protein supplementation during a 6-mo strength and conditioning program on insulin-like growth factor I and markers of bone turnover in young adults.

Exercise is beneficial for bone when adequate nutrition is provided. The role of protein consumption in bone health, however, is controversial. The objective was to ascertain the effect of high protein intake on insulin-like growth factor I (IGF-I) and markers of bone turnover during 6 mo of exercise training. Fifty-one subjects aged 18-25 y (28 men, 23 women) received a protein supplement (42 g protein, 24 g carbohydrate, 2 g fat) or a carbohydrate supplement (70 g carbohydrate) twice daily. Exercise consisted of alternating resistance training and running 5 times/wk. Plasma concentrations of IGF-I, insulin-like growth factor-binding protein 3, serum bone alkaline phosphatase, and urinary N-telopeptide collagen crosslink (NTx) concentrations were measured at 0, 3, and 6 mo after 24 h without exercise and a 12-h fast.Three-day diet records indicated no difference in energy intake between the groups. Average protein intakes after supplementation began in the protein and carbohydrate groups were 2.2 +/- 0.1 and 1.1 +/- 0.1 g/kg, respectively (P < 0.001). The increase in plasma IGF-I was greater in the protein group than in the carbohydrate group (time x supplement interaction, P = 0.01). There were no significant changes over time or significant differences by supplement in plasma insulin-like growth factor-binding protein 3 (44 and 40 kDa). Serum bone alkaline phosphatase increased significantly over time (P = 0.04) and tended to be higher in the protein group than in the carbohydrate group (P = 0.06). NTx concentrations changed over time (time and time squared; P < 0.01 for both) and were greater in the protein group than in the carbohydrate group (P = 0.04). Men had higher NTx concentrations than did women (74.6 +/- 3.4 and 60.0 +/- 3.8 nmol/mmol creatinine; P = 0.005). Protein supplementation during a strength and conditioning program resulted in changes in IGF-I concentrations.

Ballard TL, Clapper JA, Specker BL, Binkley TL…
Am. J. Clin. Nutr. Jun 2005
PMID: 15941900 | Free Full Text

Biking Lowers Bone Density in Men; Cyclists 7x More Likely to Have Osteopenia


Participation in road cycling vs running is associated with lower bone mineral density in men.

The effects of regular non-weight-bearing (NWB) exercise on bone health are largely unknown. The objective of the study was to determine the effects of participation in NWB sports on bone health in adult male recreational athletes. Male cyclists (NWB; n = 27) and runners (weight-bearing [WB]; n = 16) aged 20 to 59 years were recruited from the community. Whole-body and regional bone mineral content and bone mineral density (BMD), and body composition were assessed using dual x-ray absorptiometry. Bone formation and resorption markers, and hormones were measured in serum. Bone-loading history was estimated from a sports participation history questionnaire. Nutrient intake and current physical activity were estimated from 7-day written logs. The NWB athletes had significantly lower BMD of the whole body and spine than the WB athletes, despite having similar age, weight, body mass index, body composition, hormonal status, current activity level, and nutrient intakes. Sixty-three percent of NWB athletes had osteopenia of the spine or hip, compared with 19% of WB athletes. Cyclists were 7 times more likely to have osteopenia of the spine than runners, controlling for age, body weight, and bone-loading history. There were no group differences in serum markers of bone turnover. Based on the results of this study, current bone loading is an important determinant of whole-body and lumbar spine BMD. Therefore, bone-loading activity should be sustained during adulthood to maintain bone mass.

Rector RS, Rogers R, Ruebel M, Hinton PS
Metab. Clin. Exp. Feb 2008
PMID: 18191053

Calcium and Exercise in Rats


Short- and long-term effects of calcium and exercise on bone mineral density in ovariectomized rats.

At the level of prevention of bone mineral loss produced by ovariectomy, the aim of the present study was to determine the effect produced by supplementation of Ca in the diet and a moderate exercise programme (treadmill), simultaneously or separately, in ovariectomized rats, an experimental model of postmenopausal bone loss. Female Wistar rats (n 110, 15 weeks old) were divided into five groups: (1) OVX, rats ovariectomized at 15 weeks of age, fed a standard diet; (2) SHAM, rats sham operated at 15 weeks of age, fed a standard diet; (3) OVX-EX, ovariectomized rats, fed a standard diet and performing the established exercise programme; (4) OVX-Ca, ovariectomized rats fed a diet supplemented with Ca; (5) OVX-EXCa, ovariectomized rats with the exercise programme and diet supplemented with Ca. The different treatments were initiated 1 week after ovariectomy and were continued for 13 weeks for subgroup 1 and 28 weeks for subgroup 2, to look at the interaction of age and time passed from ovariectomy on the treatments. Bone mineral density (BMD) was determined, at the end of the study, in the lumbar spine (L2, L3 and L4) and in the left femur using a densitometer. Bone turnover was also estimated at the end of the study, measuring the serum formation marker total alkaline phosphatase (AP) and the resorption marker serum tartrate-resistant acid phosphatase (TRAP). As expected, OVX rats showed a significant decrease (P<0.05) in BMD, more pronounced in subgroup 2, and a significant increase in AP and TRAP with regard to their respective SHAM group. The simultaneous treatment with Ca and exercise produced the best effects on lumbar and femoral BMD of ovariectomized rats, partially avoiding bone loss produced by ovariectomy, although it was not able to fully maintain BMD levels of intact animals. This combined treatment produced a significant increase in AP, both in subgroups 1 and 2, and a decrease in TRAP in subgroup 1, with regard to OVX group. The exercise treatment alone was able to produce an increase in BMD with regard to OVX group only in subgroup 1 of rats (younger animals and less time from ovariectomy), but not in subgroup 2. In agreement with this, there was an increase of AP in both subgroups, lower than that observed in animals submitted to exercise plus Ca supplement, and a decrease of TRAP in subgroup 1, without significant changes in this marker in the older rats. Ca treatment did not produce any significant effect on BMD in OVX rats in both subgroups of animals, showing a decrease of AP and TRAP levels in the younger animals with no significant variations in markers of bone remodelling in the older female rats compared with their respective OVX group.

Gala J, Díaz-Curiel M, de la Piedra C, Calero J
Br. J. Nutr. Oct 2001
PMID: 11591240

I don’t know what to make of this.

Minimal Effect on Bones From Triathlon Training


Competitive season of triathlon does not alter bone metabolism and bone mineral status in male triathletes.

This longitudinal study evaluated the effects of a triathlon season on bone metabolism and hormonal status. Seven male competitive triathletes (mean age 19.3 years, range 18 – 20) with 5.0 +/- 0.3 years of competition experience were tested twice during the season: at the beginning of training and 32 weeks later. Total and regional bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry, while bone turnover was evaluated by specific biochemical markers: bone-specific alkaline phosphatase (B-ALP), osteocalcin, and urinary type I collagen C-telopeptide. In addition, sexual, calciotropic and somatotropic hormones were also analyzed. After 32 weeks, a BMD increase was found at the lumbar spine (1.9 %; p = 0.031) and skull (3.1 %; p = 0.048), while no variation was observed for total body or at the proximal femur. The B-ALP level decreased (-23.2 %; p = 0.031), but no variation was found for the other bone markers. 1.25 (OH) (2)D3, IGF-1 and the bioavailability IGF-1 index (IGF-1/IGFBP-3) increased by 18.3 % (p = 0.047), 29 % (p = 0.048), 33 % (p = 0.011), respectively, while PTH, testosterone, IGFBP-3 and cortisol concentrations were unchanged. In conclusion, the triathlon season had a moderately favourable effect on BMD, although a slowing down of bone formation activity was observed. No variation in hormonal levels was observed that could have limited the effects of exercise on bone tissue.

Maïmoun L, Galy O, Manetta J, Coste O…
Int J Sports Med Apr 2004
PMID: 15088249

Running Improves Calcium Balance in Rats


Hypokinesia-induced negative net calcium balance reversed by weight-bearing exercise.

Negative calcium balance and bone loss occurring with immobilization and hypokinesia have been attributed to a lack of weight bearing on bones. The effects of weight-bearing exercise for promotion of calcium balance after hypokinesia were examined. Rats were randomly assigned to either hypokinetic suspension for 28 d or to a control sedentary group, free to move about their cages at will. After 28 d, the rats in each group were randomly subdivided to either post-hypokinetic forced running (HR), post-hypokinetic sedentary (HS), control forced running (CR), or control sedentary (CS) groups. Net calcium balance was then determined for 25 consecutive days. Net calcium balance of HR was negative for the first 5-d period of recovery and then became positive; that of HS was negative for 25 d; that of CR and CS remained essentially positive. Net calcium absorption paralleled net calcium balance. Forced running was effective in reestablishment of positive net calcium balance after 28 d of decreased weight bearing.

Lutz J, Chen F, Kasper CE
Aviat Space Environ Med Apr 1987
PMID: 3579816