Category Archives: Phenytoin

Phenytoin Lowers Vitamin D and Increases Fractures


Bone mineral density and serum levels of 25 OH vitamin D in chronic users of antiepileptic drugs.

The aim of this cross sectional study was to evaluate bone mineral density (BMD) and serum levels of 25-hydroxy vitamin D (25OHD) in a group of patients taking antiepileptic drugs (AED) for a seizure disorder. Between May-2001 and January-2003, we evaluated 58 patients (40 women/18 men), 34.4+/-6 years old living in Curitiba or in its metropolitan area, on antiepileptic therapy for 2 to 38 years (10 on monotherapy /48 on multiple drugs regime). The group was matched by age, gender, and bone mass index to 29 healthy subjects (20 women/ 9 men); 34.2+/-5.9 years old. Medical history and physical exam were performed on all subjects with particular information sought about fractures and risks factors for osteoporosis. Blood samples were collected for total serum calcium, albumin, phosphorus, creatinine, total alkaline phosphatase, and liver function tests. BMD of the lumbar spine, femur and forearm was determined by dual energy X-ray absorptiometry (DXA, Hologic QDR 1000). Between February and April-2003, other blood samples were collected to measure 25OHD, intact paratohormone (PTH) and calcium. Unemployment and smoking history were more frequent among patients than among controls (p<0.05). Fifteen patients had a fracture history, all of which occurred during a seizure. The BMD of the lumbar spine (0.975+/-0. 13 g/cm2 vs. 1.058+/-0.1 g/cm2; p<0.03) and of the total femur (0.930+/-0.1 g/cm2 vs. 0.988+/-0.12 g/cm2; p<0.02) was lower in patients than in controls. In 63.5% of patients and in 24.1 % of controls a T-score < -1.0 in at least one site was seen. The AED users had higher total alkaline phosphatase and lower 25OHD (p<0.02). No correlations between BMD and 25OHD were found. The use of phenytoin was correlated with a greater incidence of fractures (RR: 2.38). We conclude that patients on chronic use of AED have alterations in bone metabolism characterized in this study by lower BMD of the lumbar spine and total femur and lower serum concentrations of 25OHD.

Kulak CA, Borba VZ, Bilezikian JP, Silvado CE…
Arq Neuropsiquiatr Dec 2004
PMID: 15608949 | Free Full Text

Phenytoin Lowers Vitamin D


Bone health in young women with epilepsy after one year of antiepileptic drug monotherapy.

Antiepileptic drugs (AEDs) may have adverse effects on bone mineral density (BMD) and metabolism. We previously reported biochemical evidence of increased bone turnover in premenopausal women with epilepsy on phenytoin monotherapy compared with those on carbamazepine, lamotrigine, and valproate. We therefore hypothesized that rates of bone loss would be higher in young women treated with phenytoin.
Ninety-three premenopausal women with epilepsy receiving a single AED (carbamazepine, lamotrigine, phenytoin, or valproate) participated. Subjects completed nutritional and physical activity questionnaires. Biochemical indices of bone and mineral metabolism and BMD of the proximal femur and lumbar spine were measured at baseline and 1 year.
Participants reported high calcium intake (>1,000 mg/day) and were physically active. Significant loss (2.6%) was seen at the femoral neck in the phenytoin group. BMD remained stable in the other AED groups. Bone turnover markers and calciotropic hormones were unchanged after 1 year in all groups except for a significant decline in urine N-telopeptide in the phenytoin group. In women receiving phenytoin, lower serum 25-hydroxyvitamin D concentrations were associated with higher parathyroid hormone, bone alkaline phosphatase, and urine N-telopeptide levels, a biochemical pattern consistent with secondary hyperparathyroidism and increased remodeling.
In this study, young women treated with phenytoin had significant femoral neck bone loss over 1 year. In contrast, those treated with carbamazepine, lamotrigine, and valproate did not have detectable adverse effects on bone turnover or bone mineral density. These results raise concerns about the long-term effects of phenytoin monotherapy on bone in young women with epilepsy.

Pack AM, Morrell MJ, Randall A, McMahon DJ…
Neurology Apr 2008
PMID: 18443309

Phenytoin Associated with Increased Rate of Loss of Calcaneus Bone


Antiepileptic drug use increases rates of bone loss in older women: a prospective study.

To test the hypothesis that older women with antiepileptic drug (AED) use have increased rates of bone loss. AED use was ascertained and calcaneal and hip bone mineral density (BMD) measured in a cohort of 9,704 elderly community-dwelling women enrolled in the Study of Osteoporotic Fractures, and they were followed prospectively for changes in BMD.
Current use of AED was assessed by interview, with verification of use from medication containers at baseline and follow-up examinations. Women were classified as continuous users, partial (intermittent) users, or nonusers. Rates of change in BMD were measured at the total hip and two subregions (average 4.4 years between examinations) and at the calcaneus (average 5.7 years between examinations).
After adjustment for confounders, the average rate of decline in total hip BMD steadily increased from -0.70%/year in nonusers to -0.87%/year in partial AED users to -1.16%/year in continuous AED users (p value for trend = 0.015). Higher rates of bone loss were also observed among continuous AED users at subregions of the hip and at the calcaneus. In particular, continuous phenytoin users had an adjusted 1.8-fold greater mean rate of loss at the calcaneus compared with nonusers of AED (-2.68 vs -1.46%/year; p < 0.001) and an adjusted 1.7-fold greater mean rate of loss at the total hip compared with nonusers of AED (-1.16 vs -0.70%/year; p = 0.069).
Continuous AED use in elderly women is associated with increased rates of bone loss at the calcaneus and hip. If unabated, the rate of hip bone loss among continuous AED users is sufficient to increase the risk of hip fracture by 29% over 5 years among women age 65 years and older.

Ensrud KE, Walczak TS, Blackwell T, Ensrud ER…
Neurology Jun 2004
PMID: 15184613

Phenytoin Inhibits Osteoblasts In Vitro and In Vivo; Low Doses Increase Osteoblasts In Vitro


Long-term anticonvulsant therapy leads to low bone mineral density–evidence for direct drug effects of phenytoin and carbamazepine on human osteoblast-like cells.

Anticonvulsant therapy causes changes in calcium and bone metabolism and may lead to decreased bone mass with the risk of osteoporotic fractures. The two widely used antiepileptic drugs phenytoin and carbamazepine are recognized to have direct effects on bone cells. The aim of our study was to measure the influence of long-term treatment with antiepileptic drugs on bone mineral density (BMD) and to look on direct effects of carbamazepine and phenytoin on human osteoblast-like cells. BMD was measured by dual-energy X-ray absorptiometry. Markers of bone formation and bone resorption were determined in serum and urine. Data of 59 patients were compared to 55 age and sex matched controls. Direct effects of phenytoin and carbamazepine on human osteoblast-like cells were investigated in experimental studies. BMD in the lumbar spine region (L2 through L4) was significantly lower in the patient group as compared to controls (p < 0.0004). At femoral sites BMD was lower in patients, but this difference did not reach statistical significance. The decrease in BMD at both sites was dependent on the duration of therapy. Excretion of pyridinoline crosslinks was markedly increased in the patients. 25-hydroxy-vitamin D3 and 1,25-dihydroxy-vitamin D3 were significantly decreased in patients. Proliferation rate of human osteoblast-like cells was increased by phenytoin in low doses. Both, phenytoin and carbamazepine inhibited cell growth at concentrations equivalent to therapeutic doses for the treatment of epileptic diseases. Our clinical and experimental data indicate that long-term treatment with anticonvulsant drugs leads to a lower BMD. The experimentally observed decrease in bone cell proliferation might be clinically associated with impaired new bone formation. Beside alterations in calcium and vitamin D homeostasis leading to osteomalazia, direct effects of anticonvulsant drugs on bone cells may contribute to the damaging effects on the skeletal system.

Feldkamp J, Becker A, Witte OW, Scharff D…
Exp. Clin. Endocrinol. Diabetes 2000
PMID: 10768830

Phenytoin Inhibits Osteoclasts in Mice


Diphenylhydantoin inhibits osteoclast differentiation and function through suppression of NFATc1 signaling.

Diphenylhydantoin (DPH) is widely used as an anticonvulsant drug. We examined the effects of DPH on osteoclast differentiation and function using in vivo and in vitro assay systems. Transgenic mice overexpressing a soluble form of RANKL (RANKL Tg) exhibited increased osteoclastic bone resorption. Injection of DPH into the subcutaneous tissue overlying calvaria of RANKL Tg mice suppressed the enhanced resorption in the calvaria. In co-cultures of mouse osteoblasts and bone marrow cells, DPH inhibited lipopolysaccharide (LPS)-induced osteoclast formation. DPH affected neither the mRNA expression of RANKL and osteoprotegerin nor the growth of mouse osteoblasts in culture. On the other hand, DPH inhibited the RANKL-induced formation of osteoclasts in cultures of mouse bone marrow-derived macrophages (BMMphis) and of human peripheral blood-derived CD14(+) cells. DPH concealed LPS-induced bone resorption in mouse calvarial organ cultures and inhibited the pit-forming activity of mouse osteoclasts cultured on dentine slices. DPH suppressed the RANKL-induced calcium oscillation and expression of nuclear factor of activated T cells c1 (NFATc1) and c-fos in BMMphis. Moreover, DPH inhibited the RANKL-induced nuclear localization and auto-amplification of NFATc1 in mature osteoclasts. Both BMMphis and osteoclasts expressed mRNA of a T-type calcium channel, Cav3.2, a target of DPH. Blocking the expression of Cav3.2 by short hairpin RNAs significantly suppressed RANKL-induced osteoclast differentiation. These results suggest that DPH inhibits osteoclast differentiation and function through suppression of NFATc1 signaling. The topical application of DPH may be a therapeutic treatment to prevent bone loss induced by local inflammation such as periodontitis.

Koide M, Kinugawa S, Ninomiya T, Mizoguchi T…
J. Bone Miner. Res. Aug 2009
PMID: 19292614

Phenytoin Stimulates Osteoblast Markers in Rat Cells


Stimulatory effects of phenytoin on osteoblastic differentiation of fetal rat calvaria cells in culture.

Phenytoin (diphenylhydantoin, DPH), an anticonvulsant drug for epileptic patients, has several adverse effects, including calvarial thickening and coarsening of the facial features, which occur with chronic DPH therapy. While previous studies have demonstrated that DPH has an anabolic action on bone cells in vivo and in vitro, the basis of these effects is not fully understood. In this study, the effect of DPH on osteoblastic differentiation of fetal rat calvaria (RC) cells in culture was investigated by measuring bone nodule (BN) formation, cell growth, alkaline phosphatase (ALPase) activity, collagen synthesis, and expression of osteocalcin (OC) and osteopontin (OP) mRNAs. Continuous treatment of RC cells with DPH for 18 days dose-dependently increased the mineralized BN number by 1.2-1.7-fold at concentrations of 12.5-200 micromol/L DPH. Cell growth was not affected at the same concentrations of DPH. ALPase activity was stimulated by DPH (1.1-1.9-fold) dose-dependently and was maintained at higher levels in DPH-treated cells throughout the experimental period. DPH increased mineralized and unmineralized BN formations both in the presence and the absence of 10(-8) mol/L dexamethasone (Dex). Expression of OC and OP mRNAs was markedly augmented by DPH on days 12-24 and on days 12-18, respectively. While control mRNA levels of OC and OP increased with time, the increases in DPH-treated cells were greater than those of the controls and the stimulatory effects were dose-dependent. Type I collagen was also influenced by DPH; mRNA level was enhanced and the percentage of collagen synthesized was increased significantly, by 200 micromol/L DPH. When DPH was added in three different culture stages, days 1-6 (growth), days 7-12 (matrix development), and days 13-18 (mineralization), BN formation was influenced primarily on days 1-6 and secondarily on days 7-12, but not on days 13-18, suggesting that DPH increased BN formation by enhancing not only the proportion of osteoprogenitor cells in the early stage but also the proportion of functional osteoblasts in the middle stage within mixed-cell populations. Moreover, such increases were detected in conditions of both Dex(+) and Dex(-). These findings demonstrate that DPH stimulates osteoblast-associated markers such as BNs, ALPase, OC, OP, and type I collagen by continuously affecting the stages of growth and matrix development in RC cells, and suggests that the stimulatory effects by DPH may possibly be induced independent of those by Dex.

Ikedo D, Ohishi K, Yamauchi N, Kataoka M…
Bone Dec 1999
PMID: 10593409

Phenytoin Increases Bone Formation In Vitro and In Vivo in Men


Phenytoin increases markers of osteogenesis for the human species in vitro and in vivo.

Phenytoin therapy is a well recognized cause of gingival hyperplasia, a condition characterized by increased gingival collagen synthesis, and may also cause acromegalic-like facial features. Based on these clinical findings suggestive of anabolic actions, we sought to test the hypothesis that phenytoin acts on normal bone cells to induce osteogenic effects. To test the direct actions of phenytoin on human bone cells, we measured the dose responses to phenytoin for [3H]thymidine incorporation, cell number, alkaline phosphatase specific activity, and collagen synthesis in human hip bone-derived cells. Phenytoin significantly and reproducibly increased [3H]thymidine incorporation, cell number, alkaline phosphatase specific activity, and collagen synthesis in a biphasic manner with optimal stimulatory doses between 5-10 mumol/L. Thus, micromolar concentrations of phenytoin can act directly on human bone cells to stimulate osteoblast proliferation and differentiation. We next sought to test the hypothesis that phenytoin stimulates bone formation in humans in vivo. Accordingly, three serum biochemical markers of bone formation, i.e. osteocalcin, skeletal alkaline phosphatase, and procollagen C-terminal extension peptide, were measured in 39 male epileptic patients, 20-60 yr of age, with an average duration of phenytoin therapy of 10.5 +/- 1.62 yr (mean +/- SEM). In this group of patients, the mean serum phenytoin level was 9.56 +/- 0.90 mg/L (mean +/- SEM; equivalent to 34.9 +/- 3.3 mumol/L). Thirty apparently healthy male subjects of similar age and taking no medication were included as controls. Serum calcium, 25-hydroxyvitamin D3, and PTH levels in the phenytoin-treated patients were not significantly different from those in the age-matched controls and were within the clinical laboratory normal range of our hospitals, indicating that the patients did not develop hypocalcemia, vitamin D deficiency, or secondary hyperparathyroidism. Serum levels of osteocalcin, skeletal alkaline phosphatase, and procollagen peptide in the phenytoin-treated patients were significantly increased compared to those in the age-matched subjects; in each case these biochemical markers were significantly correlated with the serum phenytoin level, but not with the dose or duration of phenytoin treatment. These findings are consistent with the interpretation that phenytoin increases the bone formation rate in humans in vivo.

Lau KH, Nakade O, Barr B, Taylor AK…
J. Clin. Endocrinol. Metab. Aug 1995
PMID: 7629228

Phenytoin Increases Bone Formation in Rats


Low dose phenytoin is an osteogenic agent in the rat.

Long-term use of phenytoin for the treatment of epilepsy has been associated with increased thickness of craniofacial bones. The aim of the present study was to evaluate the possibility that low doses of phenytoin are osteogenic in vivo by measuring the effects of phenytoin administration on serum and bone histomorphometric parameters of bone formation in two rat experiments. In the first experiment, four groups of adult male Sprague-Dawley rats received daily I.P. injections of 0, 5, 50, or 150 mg/kg/day of phenytoin, respectively, for 47 days. Serum alkaline phosphatase (ALP) and osteocalcin were increased by 5 and 50 mg/kg/day phenytoin. The increases in osteocalcin and ALP occurred by day 7 and day 21, respectively. The tibial diaphyseal mineral apposition rate (MAR) at sacrifice (day 48) was significantly increased in rats receiving 5 mg/kg/day phenytoin. At a dose of 150 mg/kg/day, the increase in serum ALP, osteocalcin and MAR was reversed. No significant differences in serum calcium, phosphorus, or 1,25(OH)2D3 levels were seen. In a second experiment, three groups of rats received daily I.P. injection of lower doses of phenytoin (i.e., 0, 1, or 5 mg/kg/day, respectively) for 42 days. Phenytoin also did not affect the growth rate or serum calcium, phosphorus, and 25(OH)D3 levels. Daily injection of 5 mg/kg/day phenytoin significantly increased several measures of bone formation, i.e., serum ALP and osteocalcin bone ALP, periosteal MAR, and trabecular bone volume.

Ohta T, Wergedal JE, Gruber HE, Baylink DJ…
Calcif. Tissue Int. Jan 1995
PMID: 7796345

Phenytoin Increases Bone Growth via TGF-Beta In Vitro


Osteogenic actions of phenytoin in human bone cells are mediated in part by TGF-beta 1.

We have recently demonstrated that phenytoin, a widely used therapeutic agent for seizure disorders, has osteogenic effects in rats and in humans in vivo, and in human bone cells in vitro. The goal of the present study was to determine the mechanism of the osteogenic action of phenytoin in normal human mandible-derived bone cells. Because many osteogenic agents increased bone cell proliferation through mediation by growth factors, we tested the hypothesis that the osteogenic effects of phenytoin involved the release of a growth factor by measuring the mRNA level of several bone cell growth factors and insulin-like growth factor (IGF) binding proteins with Northern blots using specific cDNA probes. Treatment with 5-50 microM phenytoin reproducibly and markedly increased (up to 6-fold, p < 0.001) the mRNA of transforming growth factor (TGF)-beta 1, but not that of other growth factors (i.e., IGF-II, platelet-derived growth factor-A [PDGF-A], PDGF-B, and TGF-beta 2) and IGF binding proteins (i.e., IGFBP-3, -4, and -5). The stimulation was dose dependent, with an optimal dose of 10-50 microM. Maximal increase was seen after 1 h of phenytoin treatment. The release of biologically active TGF-beta activity in conditioned media was measured with the mink lung cell proliferation inhibition assay. Twenty-four hours of phenytoin treatment significantly increased the production of biologically active TGF-beta (2-fold, p < 0.05) with the optimal dose between 5-50 microM. Comparisons between the in vitro osteogenic effects of phenytoin and those of TGF-beta 1 reveal that these two agents at their respective optimal doses had similar maximal stimulatory effects on [3H]thymidine incorporation, alkaline phosphatase (ALP)-specific activity, and type I alpha-2 collagen mRNA expression in human bone cells. The stimulatory effects of phenytoin on [3H]thymidine incorporation and ALP-specific activity were completely blocked by a neutralizing anti-TGF-beta antibody. In conclusion, these findings demonstrate for the first time that at least some of the osteogenic actions of phenytoin in human bone cells could be in part mediated by TGF-beta 1.

Nakade O, Baylink DJ, Lau KH
J. Bone Miner. Res. Dec 1996
PMID: 8970889